MODEL 371XXC VECTOR NETWORK ANALYZER

MAINTENANCE MANUAL

490 JARVIS DRIVE | MORGAN HILL, CA 95037-2809

P/N: 10410-00236 REVISION: B PRINTED: SEPTEMBER 2002 COPYRIGHT: 2002 ANRITSU CO.

WARRANTY

The ANRITSU product(s) listed on the title page is (are) warranted against defects in materials and workmanship for three years from the date of shipment.

ANRITSU's obligation covers repairing or replacing products which prove to be defective during the warranty period. Buyers shall prepay transportation charges for equipment returned to ANRITSU for warranty repairs. Obligation is limited to the original purchaser. ANRITSU is not liable for consequential damages.

LIMITATION OF WARRANTY

The foregoing warranty does not apply to ANRITSU connectors that have failed due to normal wear. Also, the warranty does not apply to defects resulting from improper or inadequate maintenance by the Buyer, unauthorized modification or misuse, or operation outside of the environmental specifications of the product. No other warranty is expressed or implied, and the remedies provided herein are the Buyer's sole and exclusive remedies.

TRADEMARK ACKNOWLEDGEMENTS

V Connector and K Connector are registered trademarks of ANRITSU Company. Ink Jet and Think Jet are registered trademarks of Hewlett-Packard Co. MS-DOS and Windows are a registered trademarks of Microsoft Corporation. Acrobat is a registered trademark of Adobe Corporation

NOTICE

ANRITSU Company has prepared this manual for use by ANRITSU Company personnel and customers as a guide for the proper installation, operation and maintenance of ANRITSU Company equipment and computer programs. The drawings, specifications, and information contained herein are the property of ANRITSU Company, and any unauthorized use or disclosure of these drawings, specifications, and information is prohibited; they shall not be reproduced, copied, or used in whole or in part as the basis for manufacture or sale of the equipment or software programs without the prior written consent of WILTRON Company.

Table of Contents

Chapter 1 — General Service Information

This chapter provides a general description of Series 371XXC Vector Network Analyzer systems, system serial numbers, and frequency ranges. It explains the level of maintenance covered in this manual and the service strategy used throughout this manual. It also contains static-sensitive component handling precautions and a list of recommended test equipment.

Chapter 2 — **Replaceable Parts**

This chapter lists all replaceable subassemblies and components for all 371XXC models. It explains the ANRITSU exchange assembly program and provides parts ordering information.

Chapter 3 — **Operational Tests**

This chapter contains procedures that provide a means of fully testing the 371XXC VNA system for proper operation and signal stability. These tests are intended to be used as a periodic check of the operational functionality of the 371XXC.

Chapter 4 — **Performance Verification Procedures**

This chapter provides detailed procedures for verifying that the performance of the 371XXC meets minimum performance standards.

Chapter 5 — **Troubleshooting**

This chapter provides information for troubleshooting Series 371XXC Vector Network Analyzer systems. The troubleshooting procedures contained in this chapter support fault isolation down to a replaceable subassembly.

Chapter 6 — Adjustments

This chapter provides adjustment procedures for all models of Series 371XXC Vector Network Analyzer systems. These procedures are used after replacement or repair of one or more critical subassemblies, or as indicated by the Performance Verification Procedures contained in Chapter 4.

Chapter 7 — **System Description**

This chapter provides descriptions of the functional operation of the major assemblies contained in Series 371XXC Vector Network Analyzer systems. The operation of all major circuit blocks is described so that the reader may better understand the function of each assembly as part of the overall operation.

Chapter 8 — Removal and Replacement Procedures

This chapter describes how to gain access to all of the major assemblies and major parts for troubleshooting and/or replacement.

Appendix A — **Diagnostic Menus**

This appendix contains descriptions and usage information for the Diagnostic Menus that are available via the front panel Option Menu key.

i

Appendix B — Error Codes/Messages

This appendix contains a listing of the Error Codes/Messages. Also included is a description of the information fields that are part of the error messages.

Appendix C — **Connector Maintenance Check Procedures**

This appendix contains procedures and information needed to perform maintenance checks (including pin-depth measurements) for the connectors on all ANRITSU supplied Calibration/Verification Kit components, Through-cables, and other associated RF/microwave components.

Appendix D — **Performance Specifications**

Appendix E — Millimeter Wave Instructions

This appendix provides service instructions for the 371XXC Millimeter Wave System. The information is specific to the 371XXC and is intended to supplement the common service instructions contained in the other parts of this manual.

Appendix F — SM5235 and SM5392 Instructions

This appendix contains operation, specification, and adjustment information for the SM5235 and SM5392 S-Parameter test sets.

Index

Table of Contents

Chapter 1 General Information

1-1	SCOPE OF MANUAL · · · · · · · · · · · · · · · · · · ·
1-2	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
1-3	ONLINE MANUALS · · · · · · · · · · · · · · · · · · ·
1-4	IDENTIFICATION NUMBER · · · · · · · · · · · · · · · · · · ·
1-5	SYSTEM DESCRIPTION · · · · · · · · · · · · · · · · · · ·
1-6	RELATED MANUALS
1-7	OPTIONS
1-8	SERVICE STRATEGY · · · · · · · · · · · · · · · · · · ·
	Functional Assembly Level Troubleshooting • • • • • • • • 1-5
	Internal Hardware Adjustments and Calibrations · · · · · 1-5
	Internal Service Log · · · · · · · · · · · · · · · · · · ·
	System Test/ Certification · · · · · · · · · · · · · · · · · · ·
	Preventive Service · · · · · · · · · · · · · · · · · · ·
	Servicing Specially Modified Instruments · · · · · · · · · 1-6
1-9	SERVICE SUPPORT INFORMATION · · · · · · · · · · · · · · · · · · ·
	Technical Support
	Service Software
	Test Fixtures/ Aids · · · · · · · · · · · · · · · · · · ·
	Failed Assembly Exchange Program ••••••••••••••••••••••••••••••••••••
1-10	RECOMMENDED TEST EQUIPMENT · · · · · · · · · · · · · · · · · · ·
1-11	STATIC SENSITIVE COMPONENT HANDLING PROCEDURES · · · · · · · · · · · · · · · · · · ·
1-12	SERVICE CENTERS · · · · · · · · · · · · · · · · · · ·
1-13	PERFORMANCE SPECIFICATIONS
1 10	$\mathbf{I} \mathbf{L} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} M$

Chapter 2 Replaceable Parts

2-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
2-2	EXCHANGE ASSEMBLY PROGRAM · · · · · · · · · · · · 2-3
2-3	REPLACEABLE SUBASSEMBLIES AND PARTS · · · · · · 2-3
2-4	PARTS ORDERING INFORMATION · · · · · · · · · · · · · · · · · · ·

Chapter 3 Operational Tests

3-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
3-2	CHECKING THE SERVICE LOG · · · · · · · · · · · · · · · · · · ·
3-3	SELF TEST · · · · · · · · · · · · · · · · · · ·
3-4	PERIPHERALS AND INTERFACES TESTS · · · · · · · · · · · · · · · · · ·
	Display Test3-6Front Panel Test3-7External Keyboard Interface Test3-7Printer Interface Test3-7GPIB Interface Test3-9

Chapter 4 Performance Verification

4-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
4-2	CALIBRATION AND MEASUREMENT CONDITIONS $\ \cdot \ \cdot \ \cdot \ 4-3$
	Standard Conditions \cdot · · · · · · · · · · · · · · · · · · ·
4-3	PERFORMANCE VERIFICATION PROCEDURE · · · · · · 4-4
	Noise Floor/Receiver Dynamic Range Test· · · · · · · · · 4-5Compression Test for 37147C, 37169C· · · · · · · · · · · 4-9

Chapter 5 Troubleshooting

· 5-3
· 5-4
· 5-4
· 5-4
· 5-4 · 5-4 · 5-6
· 5-7
 5-7 5-8 5-8 5-9 5-9 5-9 5-9
· · · ·

5-6	IF SYSTEM PRODUCES AN ERROR CODE: $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot 5-10$
	Phase Lock Error Codes (6000 Series) \cdots \cdots $5-11$ Service Log Snap Shot Data \cdots \cdots $5-13$
5-7	SIGNAL SOURCE, TEST SET, AND RECEIVER PROBLEMS 5-13
	Signal Source Phase Lock Loop Assemblies5-14Signal Source/Test Set Module Error Codes5-14Isolation Procedures5-16
5-8	IF A PERIPHERALS/ INTERFACE TEST FAILED · · · · · 5-18
	LCD Display Test Failures:5-18Front Panel Test Failures:5-18External Keyboard Interface Test Failures:5-18Printer Interface Test Failures:5-19GPIB Interface Test Failures:5-19
5-9	IF MEASUREMENTS ARE IN QUESTION •••••• 5-19
	Measurement Conditions Check List •••••••• 5-19

Chapter 6 Adjustments

6-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
6-2	LO1 CALIBRATION · · · · · · · · · · · · · · · · · · ·
	Calibration Procedure6-3Post Calibration Actions6-4
6-3	LO 2 CALIBRATION · · · · · · · · · · · · · · · · · · ·
	Calibration Procedure· · · · · · · · · · · · · · · · · · ·
6-4	FREQUENCY CALIBRATION · · · · · · · · · · · · · · · · · · ·
	Calibration Procedure6-6Post Calibration Actions6-7
6-5	RF POWER/ALC CALIBRATION · · · · · · · · · · · · · · · · · · ·
	Calibration Procedure6-8Post Calibration Actions6-10
6-6	SOURCE LOCK THRESHOLD CALIBRATION · · · · · · · · 6-11

Chapter 7 System Description

7-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
7-2	SYSTEM OVERVIEW · · · · · · · · · · · · · · · · · · ·

7-3	ANALOG SUBSYSTEM ASSEMBLIES · · · · · · · · · · · · · · 7-7
	Signal Source Module7-7Test Set Module7-8Receiver Module7-9A8, Source Lock/ Signal Separation and Control PCB7-10IF Section7-10A7 PCB, LO37-10A5 A/D Converter PCB7-11
7-4	DIGITAL SUBSYSTEM ASSEMBLIES · · · · · · · · · · · · · · · 7-12
	A9 Main Processor PCB Assembly7-12A7 PCB, 10 MHz Time Base7-13A13 I/O Interface #1 PCB Assembly7-15A14 I/O Interface #2 PCB Assembly7-15A15 Graphics Processor PCB Assembly7-16A16 Hard Disk PCB Assembly7-16Floppy Disk Drive Assembly7-16A24 VME Bus Terminator PCB7-16
7-5	MAIN CHASSIS ASSEMBLIES · · · · · · · · · · · · · · · · · · ·
	A17 System Motherboard Assembly7-16Front Panel Assembly7-16Rear Panel Assembly7-16A18 Rear Panel Interface PCB7-17Power Supply Module7-18Internal LCD7-18

Chapter 8 Remove and Replace Procedures

8-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
8-2	EQUIPMENT REQUIRED · · · · · · · · · · · · · · · · · · ·
8-3	REMOVE / REPLACE 371XXC COVERS · · · · · · · · · · · · 8-4
8-4	REMOVE / REPLACE THE A1–A9 AND A13–A16 PCBS- \cdot \cdot \cdot 8-6
	A1 – A9 PCBs · · · · · · · · · · · · · · · · · · ·
8-5	REMOVE / REPLACE A9 PCB BBRAM CHIP · · · · · · 8-8
8-6	REMOVE / REPLACE A9 PCB SRAM BATTERY · · · · · · 8-10
8-7	REMOVE / REPLACE A24 VME BUS TERMINATOR PCB $\cdot \ \ 8\mbox{-}12$
8-8	REMOVE / REPLACE FRONT PANEL ASSEMBLY $\cdots $ 8-13
8-9	LIQUID CRYSTAL DISPLAY (LCD) · · · · · · · · · · · · · 8-15
8-10	REMOVE / REPLACE FLOPPY DISK DRIVE · · · · · · · 8-16
8-11	REMOVE / REPLACE REAR PANEL ASSEMBLY · · · · · · 8-18
8-12	REMOVE / REPLACE FAN ASSEMBLY · · · · · · · · · · 8-19

8-13	REMOVE / REPLACE POWER SUPPLY MODULE \cdot · · · · 8-20
8-14	REMOVE / REPLACE A18 REAR PANEL PCB · · · · · · · 8-21
8-15	REMOVE / REPLACE TEST SET MODULE ASSEMBLIES \cdot 8-22
	Buffer Amplifier/ Sampler(A31)••••••••••••8-25Switched Doubler Module Assembly•••••8-26
8-16 8-27	REMOVE / REPLACE SIGNAL SOURCE MODULE ASSEMBLIES
	Removal of Signal Source Module • • • • • • • • • • • • • • 8-27
	A21A2 Source Control PCB······ 8-29
	A21A1 Source YIG Bias Control PCB · · · · · · · · · · · 8-29
	Switched Filter Assembly
	Down Converter Assembly
	YIG Oscillator Assembly · · · · · · · · · · · · · · · · · · ·

Appendix A Diagnostics Menus

A-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
A-2	DIAGNOSTICS MENUS · · · · · · · · · · · · · · · · · · ·
	Start Self Test
	Read Service Log · · · · · · · · · · · · · · · · · · ·
	Installed Options · · · · · · · · · · · · · · · · · · ·
	Peripheral Tests · · · · · · · · · · · · · · · · · ·
	Troubleshooting · · · · · · · · · · · · · · · · · · ·
	H/W Calibrations \cdot · · · · · · · · · · · · · · · · · · ·

Appendix B Error Messages

B-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
B-2	OPERATIONAL ERROR MESSAGES · · · · · · · · · · · · · · · B-3
B-3	DISK RELATED ERROR MESSAGES · · · · · · · · · · · · · · · · B-3
B-4	GPIB RELATED ERROR MESSAGES · · · · · · · · · · · · · · · · B-3
B-5	SERVICE LOG ERROR MESSAGES · · · · · · · · · · · · · · · · · · B-3
	0000 - 0099 · · · · · · · · · · · · · · · · ·
	0100 - 3999 · · · · · · · · · · · · · · · · ·
	4000 - 4999 · · · · · · · · · · · · · · · · ·
	5000 - 5999 · · · · · · · · · · · · · · · · ·
	6000 - 6999 · · · · · · · · · · · · · · · · ·
	7000 - 7999 · · · · · · · · · · · · · · · · ·
	8000 - 8999 · · · · · · · · · · · · · · · · ·

Appendix C Connector Maintenance Check Procedures

C-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
C-2	PRECAUTIONS · · · · · · · · · · · · · · · · · · ·
	Pin Depth Problems • • • • • • • • • • • • • • • • • • •
	Pin-Depth Tolerance · · · · · · · · · · · · · · · · · · ·
	Avoid Over Torquing Connectors
	Teflon Tuning Washers
	Avoid Mechanical Shock
	Keep Connectors Clean · · · · · · · · · · · · · · · · · · ·
	Visual Inspection · · · · · · · · · · · · · · · · · · ·
C-3	REPAIR/ MAINTENANCE · · · · · · · · · · · · · · · · · · ·

Appendix D Performance Specifications

Appendix E Millimeter Wave Service Instructions

E-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
E-2	DESCRIPTION · · · · · · · · · · · · · · · · · · ·
E-3	REPLACEABLE PARTS · · · · · · · · · · · · · · · · · · ·
E-4	PERFORMANCE VERIFICATION-GENERAL · · · · · · · E-4
	Required Equipment · · · · · · · · · · · · · · · · · · ·
E-5	PERFORMANCE VERIFICATION– IF POWER LEVEL TEST·····E-6
	Test Setup E-6 Test Procedure E-7
E-6	PERFORMANCE VERIFICATION– HIGH LEVEL NOISE TEST, TRANSMISSION · · · · · · · · E-8
	Test SetupE-8Test ProcedureE-10
E-7	PERFORMANCE VERIFICATION– HIGH LEVEL NOISE TEST, REFLECTION · · · · · · · · · E-10
	Test SetupE-11Test ProcedureE-12
E-8	PERFORMANCE VERIFICATION– SYSTEM DYNAMIC RANGE TEST · · · · · · · · · · · · · · E-12
	Calibration · · · · · · · · · · · · · · · · · · ·

E-9	PERFORMANCE VERIFICATION– SOURCE MATCH/DIRECTIVITY TEST · · · · · · · · · · · · E-15
	Test SetupE-15Test ProcedureE-16
E-10	TROUBLESHOOTING · · · · · · · · · · · · · · · · · · ·
	Define the Fault AccuratelyE-20Isolate the FaultE-20Determine the Fault LocationE-20If the Fault is in the Signal SourcesE-20If the Fault is in the Test SetE-21If the Fault is in the Test SetE-21RF Components CheckE-21PCB Assembly Voltage CheckE-22If the Fault is in the Millimeter Wave Module:E-23If the Fault is in the VNAE-23
E-11	SYSTEM DESCRIPTION · · · · · · · · · · · · · · · · · · ·
	System OverviewE-24Signal SourcesE-25Test SetE-25Millimeter Wave ModulesE-27Vector Network AnalyzerE-28System OperationE-28
E-12	REMOVE AND REPLACE PROCEDURES (3735B TEST SET) · · · · · · · · · · · · · · · · · · ·
	Remove CoversE-30Remove Power SupplyE-30Remove Power Distribution PCBE-33Remove Power Divide/Isolator AssemblyE-33Remove Transfer Switch AssemblyE-33Remove Transfer Switch PCB AssemblyE-33Remove Fan AssemblyE-34Remove Line Voltage ModuleE-34

Appendix F SM5293 and SM5235 Service Information

F-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
F-2	REPLACEABLE EXTERNAL CABLES · · · · · · · · · · · · F-3
F-3	37100C SETUP WITH SM INSTRUMENTS $\cdots \cdots F$ -4
F-4	OPERATIONAL TESTING · · · · · · · · · · · · · · · · · · ·
	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
F-5	TROUBLESHOOTING · · · · · · · · · · · · · · · · · · ·

Chapter 1 General Information

Table of Contents

1-1	SCOPE OF MANUAL · · · · · · · · · · · · · · · · · · ·
1-2	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
1-3	ONLINE MANUALS · · · · · · · · · · · · · · · · · · ·
1-4	IDENTIFICATION NUMBER · · · · · · · · · · · · · · · · · · ·
1-5	SYSTEM DESCRIPTION · · · · · · · · · · · · · · · · · · ·
1-6	RELATED MANUALS
1-7	OPTIONS 1-4
1-8	SERVICE STRATEGY · · · · · · · · · · · · · · · · · · ·
1-9	Functional Assembly Level Troubleshooting 1-5 Internal Hardware Adjustments and Calibrations 1-5 Internal Service Log 1-5 System Test/ Certification 1-5 Preventive Service 1-5 Servicing Specially Modified Instruments 1-6 SERVICE SUPPORT INFORMATION 1-6 Service Software 1-7 Test Fixtures/ Aids 1-7
1-10	Falled Assembly Exchange Program · · · · · · · · · · · · · · · · · · ·
1-11	STATIC SENSITIVE COMPONENT HANDLING PROCEDURES · · · · · · · · · · · · · · · · · · ·
1-12	SERVICE CENTERS · · · · · · · · · · · · · · · · · · ·
1-13	PERFORMANCE SPECIFICATIONS · · · · · · · · · · · · · · · · · · ·

Figure 1-1. Series 37100C Vector Network Analyzer System

Chapter 1 General Information

1-1	SCOPE OF MANUAL	This manual provides general service and preventive maintenance in- formation for the ANRITSU 371XXC family of Vector Network Ana- lyzer (VNA) systems. It contains procedures for:
		Testing the instrument for proper operation.
		Verifying measurement accuracy and traceability to National In- stitute of Standards and Technology (NIST).
		Troubleshooting a failed instrument to the exchange subassembly level or the subsystem requiring adjustment.
		Adjusting instrument internal sub-systems.
		Locating and replacing failed parts.
		 Information on calibration and repair of SM5235 and SM5392 Test Sets (Appendix F).
		Throughout this manual, the terms "371XXC" and "371XXC VNA" will be used interchangeably to refer to all Series 37100C Network Analyzer system models, unless otherwise noted.
1-2	INTRODUCTION	This chapter of the manual provides a general description of 371XXC VNA systems, system serial numbers, frequency ranges, and related manuals. Also included is information about the level of maintenance covered in this manual, service strategy, available service facilities, and static-sensitive component handling precautions. A list of recommended test equipment is also provided.
1-3	ONLINE MANUALS	This manual is available on CD ROM as an Adobe Acrobat [™] (*.pdf) file. The file can be viewed using Acrobat Reader [™] , a free program that is also available on the CD ROM. This file is "linked" such that the viewer can choose a topic to view from the displayed "bookmark" list and "jump" to the manual page on which the topic resides. The text can also be word-searched. A copy of this CD ROM, part number 10920-00036, is pro- vided free of charge with this manual.
1-4	IDENTIFICATION NUMBER	All ANRITSU instruments are assigned a six-digit ID number, such as "401001." This number appears on a decal affixed to the rear panel. Please use this identification number during any correspondence with ANRITSU Customer Service about this instrument.

1-5 SYSTEM DESCRIPTION 371XXC Model Frequencies		The 371XXC Analyzers are microprocessor controlled Vector Network An- alyzers. Each is a single-instrument system that contains a built-in signal				
Model	Freq Range	shown in Figure 1-1. These analyzers are produced in two models that				
37147C 22.5 MHz to 20.0 GHz		cover a range	cover a range of from 22.5 MHz to 40 GHz. The table at left lists the fre-			
37169C	22.5 MHz to 40.0 GHz	quencies for	quencies for each model.			
1-6 RELATED MANUALS		The 37XXXC describes the tains general procedures fo	The 37XXXC Vector Network Analyzer Operation Manual (10410-00226) describes the front panel operation for all 37XXXC models. It also con- tains general information, specifications, and Performance Verification procedures for all models.			
		The 37XXXC (10410-0022 programmin the IEEE-48 this manual Quick Refere	C Series Vector Network Analyzer Prog 7) describes all 37XXXC GPIB comma g information for operation of the 37X 8 General Purpose Interface Bus. Incl is the 37XXXC Series Vector Network ence Guide (10410-00229).	gramming Manual nds and provides XXC remotely via uded at the rear of Analyzer GPIB		
1-7 OPTIONS		The 371XXC VNA options and their respective upgrade kit part numbers that can be installed at ANRITSU Service Centers are:				
		Option	Description	Upgrade Kit		
		1	Rack Mount w/slides	ND39486		
		1A	Rack Mount	ND40916		
		2A	Time Domain (Microwave Units)	ND39477		
		10A	High Stability Ovenized Time Base, 1 Hz Frequency Resolution	ND45045		
1-8 s	ERVICE STRATEGY	This paragra egy and avai information i service funct	ph provides an overview of the 371XXC lable service facilities. It also provides re in various locations in this manual need ions required for the 371XXC VNA.	VNA service strat- eferences to the ed to accomplish the		
		Appendices - tailed descri	- Refer to the Appendices at the rear o ptions of the following:	f this manual for de-		
		Diagno	stic Menus			
		GPIB C	□ GPIB Commands			
		Error Messages				

Functional Assembly Level Troubleshooting	The 371XXC modular design, extensive built-in diagnostics, and auto- mated service tools are designed to support fast exchange of functional assembly level repairs.	
	Failed assemblies are not field repairable. Once an assembly is found to be faulty, it should be returned to an authorized ANRITSU Service Center for exchange. Refer to the description of the Exchange Assem- bly Program in Chapter 2, Replaceable Parts.	
	The procedures for troubleshooting a failed 371XXC VNA are de- scribed in this manual in Chapter 5, Troubleshooting.	
Internal Hardware Adjustments and Calibrations	There are five automated internal hardware field calibrations. Two of them are used to characterize the 371XXC frequency and power genera- tion sub-systems. These calibrations insure fast, consistent phase lock of system frequencies and proper compensation, leveling, and flatness of system power at the front panel test ports.	
	To conduct these calibrations, you need only connect the appropriate test equipment (counter or power meter) to the 371XXC and initiate the calibration. The 371XXC will control itself and the externally con- nected test equipment to perform measurements and store calibration constants in its internal battery backed RAM (BBRAM).	
	The procedures for adjusting the 371XXC VNA are described in this manual in Chapter 6, Adjustments.	
Internal Service Log	The 371XXC continuously monitors itself for proper operation. Should a failure occur, it notifies the user via a failure message on the display screen. (In remote-only operation, it also sets the GPIB Status Byte, if enabled.) It also writes the error message along with some data pertinent to the failure to an internal service log stored in battery-backed memory.	
	The service log can be checked at any time to view (without erasing) all error messages. It is capable of storing more than 30 pages of service messages and data. The 371XXC will automatically remove the oldest errors first to make room for new errors, if necessary. To check the contents of the service log, use the procedure described in Chapter 3, Operational Tests.	
	<i>NOTE</i> A printed or disk file copy of the Service Log (with the fail-	
	ure in question) must be made available to ANRITSU when exchanging a failed assembly, or when requesting service support. Refer to Chapter 2, Replaceable Parts, for further information.	
System Test/	Quick operational checkout of the system may be accomplished by the	

System Test/Quick operational checkout of the system may be accomplished by theCertificationsystem user or for incoming inspection purposes using the "Operational
Checkout" chapter in the 371XXC Operations Manual. Those procedures

		are useful in quickly verifying that the instrument's primary measure- ment functions are operational and stable.
		Full operational testing of the system is detailed in Chapter 3, Opera- tional Tests. These tests should be performed annually, or more often depending on system use.
		Verification of the system's measurement accuracy and other key per- formance parameters may be done using the procedures in Chapter 4, Performance Verification. This should be performed annually, or more often depending on system use.
	Preventive Service	The 371XXC A9 Processor PCB contains a battery-backed memory/real time clock chip (BBRAM) and a static memory (SRAM) backup battery. These have a finite life span and should be replaced periodically per the procedures in Chapter 8, Removal and Replacement Procedures.
		The BBRAM chip has a rated life span of four years. The SRAM backup battery has a worst case elapsed time for SRAM battery pro- tection of 200 days. The SRAM battery life span will vary according to how the system is used; that is, how often the system is powered off for extended periods of time.
	Servicing Specially Modified Instruments	Instruments with customer requested special modifications performed by ANRITSU will have an identifying Specials Modification number printed on the rear panel. This number will be preceded with the letters SM, i. e., SM1234 is special modification number 1234.
		Special instruments may have service requirements different from those specified in this manual. SM5235 and SM5392 are instruments designed for use with the 37100C VNA. Refer to Appendix F for ser- vice instructions. Contact your local Service Center if you need more information when servicing such instruments.
1-9	SERVICE SUPPORT INFORMATION	The following paragraphs briefly describe the various service support services and aids available to you to help you maintain your 371XXC.
	Technical Support	Technical service support is available by contacting any ANRITSU Worldwide Service Center (see Chapter 2).
		If servicing or repairing your own system and you need technical sup- port, you will need to provide the items listed below to the ANRITSU Customer Support Engineer:
		 Measurement data in question "Operational Tests" results System state (from UTILITY menu) Service Log (from DIAGNOSTICS menu)

Service Software	The service software listed below is contained on the diskette located at the rear of this manual:		
	ANRITSU 37XXX Test Software (2300-178) This software contains a series of automated tests designed to insure the 371XXC signal paths are functioning properly and capable of sup- porting stable calibrations and measurements. See Operational Tests Chapter for details.		
Test Fixtures/ Aids	The test fixtures and test aids listed below are available through your lo- cal ANRITSU Sales or Service Center:		
	Rear Panel Printer Port Test Fixture (B39553) This test fixture is used to check out digital printer interface circuits on the rear panel assembly.		
	GPIB Cable (2100-2) This cable is used to check out digital GPIB interface circuits on the rear panel assembly.		
	Front Panel Source Lock Test Fixture (ND45331) This test fixture is used to evaluate system performance.		
	Front Panel Test Signal Lock Test Fixture (ND45332) This test fixture is used to evaluate system performance.		
Failed Assembly Exchange Program	The exchange program allows a customer to quickly exchange a failed subassembly for a factory refurbished, fully system-tested end unit that is under warranty. This results in significant time and price savings as com- pared with ordering a new assembly.		
	Refer to Chapter 2, Replaceable Parts, for a complete list of exchange- able assemblies for all Series 37100C models.		
	NOTE		

When sending a failed assembly to the factory for exchange, a copy of the Service Log **must always** accompany the failed assembly. Refer to Chapter 2, Replaceable Parts, for further information.

1-10 RECOMMENDED TEST EQUIPMENT

Table 1-1 lists the recommended test equipment to be used for all maintenance activities for all Series 37100C models. Note the "Use" codes listed in the right hand column of the table. These codes list the applicable maintenance activities for the equipment listed.

INSTRUMENT	CRITICAL SPECIFICATION	RECOMMENDED MANUFACTURER/MODEL	USE**
Computer/Controller	Equipped with National Instruments GPIB Interface Adapter, w/Driver Soft- ware and Windows 95/98	Any	O, P
Test Software		ANRITSU 2300-178	0
Floppy Disk	Formatted, IBM PC format	DS/HD 1.44 Mbyte	А
GPIB Cable		ANRITSU 2100-2, or equivalent	O, P, A
RF/Microwave Cable	DC – 40 GHz, K type connectors (male or female), Length, 3 ft.	Any	P, A
BNC Cable	Length, 4 ft., 2 each	Any	0
Printer Port Test Fixture		ANRITSU B39553	0
Front Panel Source Loc	k Test Fixture	ANRITSU ND45331	O, P
Front Panel Test Signal	Test Fixture	ANRITSU ND45332	O, P
Fixed Attenuator	Contains test data	ANRITSU 41KC-10, w/Opt C	Р
Fixed Attenuator		ANRITSU 41KC-3	Р
Thru Line		ANRITSU 3670K50-2, 3671K50-2	0
Calibration Kit		ANRITSU 3652	0, P
Frequency Counter	Frequency: 0.1 to 26.5 GHz Input Impedance: 50Ω	EIP Microwave, Inc., with GPIB and Band 3 Input	P, A
Digital Multimeter	Resolution: 4½ digits DC Accuracy: 0.1 % AC Accuracy: 0.1 %	Any	Т
Oscilloscope	<i>Bandwidth:</i> DC to 100 MHz <i>Sensitivity:</i> 2 mV <i>Horiz. Sensitivity:</i> 50 ns/division	Any	Т
Power Meter and Power Sensor		Anritsu Model ML243xA Power Me- ter, with MA2474A	P, A
Gauging Set	GPC-7 Gauging Set K Connector Gauging Set	ANRITSU 01-161 ANRITSU 01-162	Ο, Τ
** LISE CODES:			

 Table 1-1.
 Recommended Test Equipment (1 of 1)

USE CODES:

A Adjustment / Internal Hardware Calibration

O Operational Testing

P Performance Verification

T Troubleshooting

1-11	STATIC SENSITIVE COMPONENT HANDLING PROCEDURES	The 371XXC contains components that can be damaged by static electric- ity. Figure 1-2 (next page) illustrates the precautions that should be fol- lowed when handling static-sensitive subassemblies and components. If followed, these precautions will minimize the possibilities of static-shock damage to these items.
1-12	SERVICE CENTERS	ANRITSU Company offers a full range of repair and calibration services at fully staffed and equipped service centers throughout the world. Table 2-1, located on page 2-4, lists all ANRITSU service centers.
1-13	PERFORMANCE SPECIFICATIONS	The performance specifications for all Series 371XXC models are con- tained in the Technical Data Sheet that is located in Appendix D, Per- formance Specifications.

RECOMMENDED TEST EQUIPMENT

GENERAL INFORMATION

1. Do not touch exposed contacts on **2**. any static sensitive component.

4. Wear a static-discharge wristband **5.** when working with static sensitive components.

Do not slide static sensitive compo- **3.** nent across any surface.

Do not handle static sensitive components in areas where the floor or work surface covering is capable of generating a static charge.

Label all static sensitive devices.

6. Keep component leads shorted together whenever possible.

 Handle PCBs only by their edges. 8. Do not handle by the edge connectors.

Lift & handle solid state devices by their bodies – never by their leads.

9. Transport and store PCBs and other static sensitive devices in static-shielded containers.

- 10. ADDITIONAL PRECAUTIONS:
 - Keep work spaces clean and free of any objects capable of holding or storing a static charge.
 - Connect soldering tools to an earth ground.
 - Use only special anti-static suction or wick-type desoldering tools.

Figure 1-2. Static Sensitive Component Handling Procedures

Chapter 2 Replaceable Parts

Table of Contents

2-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
2-2	EXCHANGE ASSEMBLY PROGRAM · · · · · · · · · · · · · · · 2-3
2-3	REPLACEABLE SUBASSEMBLIES AND PARTS · · · · · · 2-3
2-4	PARTS ORDERING INFORMATION · · · · · · · · · · · · · · · 2-4

Chapter 2 Replaceable Parts

2-1 INTRODUCTION This chapter provides replaceable parts information for all 371XXC models. The major replaceable 371XXC assemblies and parts are listed in Tables 2-2 through 2-7. The locations of these assemblies/parts are shown in Figures 2-1 through 2-3. 2-2 EXCHANGE ASSEMBLY ANRITSU maintains a module exchange program for selected subassem-PROGRAM blies. If a malfunction occurs in one of these subassemblies, the defective item can be exchanged. Upon receiving your request, ANRITSU will ship the exchange subassembly to you, typically within 24 hours. You then have 45 days in which to return the defective item. All exchange subassemblies or RF assemblies are warranted for 90 days from the date of shipment, or for the balance of the original equipment warranty, whichever is longer. NOTE When sending a failed assembly to the factory for exchange, a copy of the Service Log must always accompany the failed assembly. This copy may be a printout, or a saved disk copy. Due to the importance of the service log information to the ANRITSU factory Service Engineers, the exchange prices are only valid if the service log data is included with the failed assembly. Please have the exact model number and serial number of your unit available when requesting this service, as the information about your unit is filed according to the instrument's model and serial number. For more information about the program, contact your local sales representative or call ANRITSU Customer Service direct (refer to paragraph 2-4. 2-3 REPLACEABLE Tables 2-2 through 2-5, (starting page 2-5) list the major replaceable subassemblies and parts for the 371XXC. These assemblies/parts are pres-SUBASSEMBLIES AND PARTS ently covered by the ANRITSU exchange assembly program. Table 2-6 (page 2-6) lists disposable parts for the 371XXC, and Table 2-7 lists factory-repairable parts for the 371XXC. (The parts listed in Tables 2-6 and 2-7 are not presently on the exchange assembly program.)

NOTE

The 371XXC A17 Motherboard PCB Assembly is not a field-replaceable item.

REPLACEABLE PARTS

PARTS ORDERING INFORMATION

2-4 PARTS ORDERING INFORMATION

Table 2-1. Anritsu Service Centers

UNITED STATES

ANRITSU COMPANY 490 Jarvis Drive Morgan Hill, CA 95037-2809 Telephone: (408) 776-8300 1-800-ANRITSU FAX: 408-776-1744

ANRITSU COMPANY 10 New Maple Ave., Unit 305 Pine Brook, NJ 07058 Telephone: (973) 227-8999 1-800-ANRITSU FAX: 973-575-0092

ANRITSU COMPANY

1155 E. Collins Blvd Richardson, TX 75081 Telephone: 1-800-ANRITSU FAX: 972-671-1877

AUSTRALIA

ANRITSU PTY. LTD. Unit 3, 170 Foster Road Mt Waverley, VIC 3149 Australia Telephone: 03-9558-8177 FAX: 03-9558-8255

BRAZIL

ANRITSU ELECTRONICA LTDA. Praia de Botafogo, 440, Sala 2401 CEP22250-040, Rio de Janeiro, RJ, Brasil Telephone: 021-527-6922 FAX: 021-53-71-456

CANADA

ANRITSU INSTRUMENTS LTD. 700 Silver Seven Road, Suite 120 Kanata, Ontario K2V 1C3 Telephone: (613) 591-2003 FAX: (613) 591-1006

CHINA

ANRITSU ELECTRONICS (SHANGHAI) CO. LTD. 2F, Rm B, 52 Section Factory Building No. 516 Fu Te Rd (N) Shanghai 200131 P.R. China Telephone:21-58680226, 58680227, 58680228 FAX: 21-58680588 All parts listed in Tables 2-2 through 2-7 may be ordered from your local ANRITSU service center (Table 2-1).

FRANCE

ANRITSU S.A 9 Avenue du Quebec Zone de Courtaboeuf 91951 Les Ulis Cedex Telephone: 016-09-21-550 FAX: 016-44-61-065

GERMANY

ANRITSU GmbH Grafenberger Allee 54-56 D-40237 Dusseldorf, Germany Telephone: 0211-968550 FAX: 0211-9685555

INDIA

MEERA AGENCIES PVT. LTD. 23 Community Centre Zamrudpur, Kailash Colony Extension, New Delhi, India 110 048 Phone: 011-6442700/6442800 FAX : 011-644250023

ISRAEL

TECH-CENT, LTD. 4 Raul Valenberg St Tel-Aviv 69719 Telephone: (03) 64-78-563 FAX: (03) 64-78-334

ITALY

ANRITSU Sp.A Roma Office Via E. Vittorini, 129 00144 Roma EUR Telephone: (06) 50-99-711 FAX: (06) 50-22-4252

KOREA

ANRITSU CORPORATION LTD. Head Office: 14F, Hyunjuk Building 832-41 Yeoksam-Dong, Kangnam-Ku Seoul 135-080, South Korea Telephone: 02-553-6603 FAX: 02-553-6604

Service Center: 8F Samwon Building 1329-8, Seocho-Dong Seocho-Ku Seoul, South Korea 137-070 Telephone: 02-581-6603 FAX: 02-582-6603

JAPAN

ANRITSU CUSTOMER SERVICE LTD. 1800 Onna Atsugi-shi Kanagawa-Prf. 243 Japan Telephone: 0462-96-6688 FAX: 0462-25-8379

SINGAPORE

ANRITSU (SINGAPORE) PTE LTD. 10, Hoe Chiang Road #07-01/02 Keppel Towers Singapore 089315 Telephone: 282-2400 FAX: 282-2533

SOUTH AFRICA

ETECSA 12 Surrey Square Office Park 330 Surrey Avenue Ferndale, Randburt, 2194 South Africa Telephone: 011-27-11-787-7200 FAX: 011-27-11-787-0446

SWEDEN

ANRITSU AB Botivid Center Fittja Backe 13A 145 84 Stockholmn Telephone: (08) 534-707-00 FAX: (08) 534-707-30

TAIWAN

ANRITSU CO., LTD. 6F, No. 96, Section 3 Chien Kuo N. Road Taipei, Taiwan, R.O.C. Telephone: (02) 515-6050 FAX: (02) 509-5519

UNITED KINGDOM

ANRITSU LTD. 200 Capability Green Luton, Bedfordshire LU1 3LU, England Telephone: 015-82-433200 FAX: 015-82-731303

Reference Designator	371XXC Option	Assembly / Part	Part Number
A1		LO1	D46866-7
A2		LO2	50725-3
A3		Test A IF	D38503-4
A4		Reference IF	D41794-4
A5*		A/D	D38505-3
A6		Test B IF	D38503-5
A7	without Opt 10A	LO3	D38507-3
A7	with Opt 10A	LO3	D38507-4
A8		Source Lock/ Separation Control	49334-4
A9		Main Processor ND550	
A13		I/O #1 D38	
A14		I/O #2 D385	
A15		Graphics Processor	D44281-3
A16		Hard Disk (w/ PCB)	ND55506
A18		Rear Panel PCB	D44255-3
A19		Front Panel Switch PCB	D44279-3
A20**		Front Panel Control PCB	D44280-3
A21A1		Source YIG/Bias Control (p/o Signal Source Module)	48512-3
A21A2		Source Control (p/o Signal Source Module)	48513-3
A24		VME Bus Terminator	D38524-3

Table 2-2. Printed Circuit Board Assemblies

* NOTE: When the A5 PCB is replaced, all switches on the new PCB must be changed to match the settings found on the previous PCB.

Table 2-3. Test Set Assembly RF/Microwave Components

Assembly / Part	371XXC Model / Option	Part Number
Level Detector	All	C24950-2
40 GHz Quad Buffer Power Amp	All	see Table 2-7
Switched Doubler Module (SDM)	37169C only	D28540
RF Splitter	All	K241C

Table 2-4. Signal Source Module RF/Microwave Components

Assembly / Part	371XXC Model / Option	Part Number
YIG Oscillator (2 - 20 GHz)	All	C21620-1
Down Converter	All	D27532
Switched Filter	All	D45243

Table 2-5. Miscellaneous /Integrated Assemblies

Assembly / Part	371XXC Model / Option	Part Number
10 MHz Ovenized Oscillator	Option 10A only	ND39476
Power Supply Module	All	54908
LCD Display	All	15-100
Floppy Disk Assy	All	C38550
Fan Assembly, Rear Panel	All	B38533
Front Panel RF Connector	All	B15660

Table 2-6. Consumable Parts

Assembly / Part	371XXC Model / Option	Part Number
System Software	All	2300-212
Front Panel Encoder Knob	All	2000-557
Fuse, 8A, Fast Blow 3AG Cartridge type (F1 Line fuse for power supply assembly)	All	631-72
Battery Backed RAM	All	54-1350
Back-Up Battery	All	633-20*
* 54347 PCB only		

Table 2-7. Replacements Kits for the Buffer/Power An	ips
---	-----

Buffer Amp Label	Replacement Buffer/Power Amp Kit
D44364	ND54995
ND54966	ND54995
54277	ND54988
58437	ND54988

Figure 2-1. 371XXC Major Assemblies Location Diagram (Top ¾ View)

Figure 2-2. 371XXC Major Assemblies Location Diagram (Bottom View)

Figure 2-3. Signal Source Parts Location Diagram

Chapter 3 Operational Tests

Table of Contents

3-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
3-2	CHECKING THE SERVICE LOG · · · · · · · · · · · · · · · · · · ·
3-3	SELF TEST · · · · · · · · · · · · · · · · · · ·
3-4	PERIPHERALS AND INTERFACES TESTS · · · · · · · · · · · · · · · · · ·
	Display Test.3-6Front Panel Test3-7External Keyboard Interface Test3-7Printer Interface Test3-7GPIB Interface Test3-9

Chapter 3 Operational Tests

3-1 INTRODUCTION

The tests in this section provide a means of fully testing the 371XXC VNA system for proper operation and signal stability. These tests are intended to be used as a periodic check of the operational functionality of the 371XXC.

The tests should be performed in their entirety at least once annually. Although there is no requirement to do so, the tests should generally be run in the sequence presented.

NOTE

The procedures presented in Chapter 4, Performance Verification, provide the means to test the *accuracy* of the tests performed by the 371XXC.

Please ensure you have read and fully understand the servicing concepts for the 371XXC presented in Chapter 1 prior to continuing with this chapter.

Operational Tests for the 371XXC consist of the following:

- □ Checking the Service Log
- Self Test
- **D** Peripherals and Interface Testing
- Signal Path Tests (includes Checking the Service Log and Self Test.)

These tests are described in paragraphs 3-2 through 3-5, which start on the next page.

<i>3-2</i> CHECKING THE SERVICE LOG		Checking log.	the service log consists of viewing the entries written into the	
			T s c e d p	CAUTION The service log contains historical information about in- trument condition and any failures that may have oc- urred. It should be cleared only by a qualified service ngineer. Such clearing should be accomplished only upon letermining that the errors need not be saved to disk, or printed out for service purposes.
			Procedu	ire:
			Step 1.	Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
			<i>Step 2.</i>	Select DIAGNOSTICS from the OPTIONS menu (left); then select READ SERVICE LOG from the DIAGNOS- TICS menu.
OP TRIGGER REAR PAI OUTPUT DIAGNOS MULTIPLE CONTROI	TIONS IS NEL STICS	DIAGNOSTICS START SELF TEST READ SERVICE LOG INSTALLED OPTIONS PERIPHERAL TESTS TROUBLESHOOTING (FOR SERVICE ONLY)		The 371XXC will now display the contents of the service log. The display consists of a header and an error listing. The header contains a variety of system service informa- tion. The error listing contains error messages for failures that may have occurred during operation.
PRESS < SE	ENTER> TO	HW CALIBRATIONS (FOR SERVICE		NOTE
		PRESS <enter> TO SELECT</enter>		 Errors 7201–7209, GPIB remote opera- tion programming errors, report that one or more external GPIB programming er-

do not indicate a 371XXC system fault. Informational messages 0000–0099 report the pass/fail status of a peripheral access. These messages do not indicate a 371XXC system fault.

rors has been detected. These messages

Any other error messages in the service log may indicate an instrument problem and should be investigated. Refer to the Chapter 5, Troubleshooting, for further information.

CAUTION

The **CLEAR SERVICE LOG** menu selection will immediately and permanently clear all the error message entries from the service log. (However, it will not clear the header information.) See Caution message at top of page.

3-3 SELF TEST

SELF TEST

The self test performs a series of tests that verify that various internal 371XXC circuits are functional and operating properly. Note that system must be free of Lock Failure error messages to perform the self-test.

To start the self test:

- *Step 1.* Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
- *Step 2.* Select **DIAGNOSTICS** from the OPTIONS menu; then select **START SELF TEST** (below).

Step 3. Wait for test sequence to complete. (Once invoked, this test requires no user interaction or external equipment.)

Upon completion, the net pass/fail result of the self test is shown on the display. If the 371XXC is in remote-only operation, the results are reported via the GPIB output buffer. If the self test fails, detailed error messages will be written into the service log.

If self test fails:

- □ Check the service log to view failure messages.
- □ Proceed to Chapter 5, Troubleshooting.

3-4 PERIPHERALS AND INTERFACES TESTS

These tests are used to verify the operation of the LCD display, front panel keys, and peripheral devices that are used with the 371XXC. They consist of the following:

- LCD Display Test
- Front Panel Test
- **D** External Keyboard Interface Test
- Printer Interface Test
- **GPIB** Interface Test

Display Test This test verifies that the 371XXC display is functioning correctly.

NOTE

The External VGA Out Connector can also be tested when using this procedure if an external VGA monitor is connected.

Procedure:

- *Step 1.* Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
- *Step 2.* Select **DIAGNOSTICS** from menu; then in sequence select: **PERIPHERAL TESTS**, and then **CRT DISPLAY**. See diagram below.

Step 3. Follow instructions on the LCD until test is completed.

If test fails, proceed to Chapter 5, Troubleshooting.

PERIPHERALS AND INTERFACES TESTS

Front Panel Test This test verifies that the control keys in each of the 371XXC key groups are functioning correctly.

Procedure:

- *Step 1.* Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
- *Step 2.* Select **DIAGNOSTICS** from the OPTIONS menu; then in sequence select: **PERIPHERAL TESTS**, and then **FRONT PANEL**. See diagram below.

If test fails, proceed to Chapter 5, Troubleshooting.

External Keyboard This test verifies that the 371XXC external keyboard interface is func-*Interface Test* tioning correctly.

Equipment Required:

An IBM compatible keyboard is required for this test.

Procedure:

- *Step 1.* Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
- *Step 2.* Select **DIAGNOSTICS** from the OPTIONS menu; then in sequence select: **PERIPHERAL TESTS**, and then **EX-TERNAL KEYBOARD**. See diagram above.
- *Step 3.* Follow instructions on the screen until test is completed.

If test fails, proceed to Chapter 5, Troubleshooting.

Printer Interface Test This test verifies that the 371XXC printer interface is functioning correctly.

Equipment Required:

Printer Test Fixture (ANRITSU PN: B39553)

Procedure:

- *Step 1.* Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
- **Step 2.** Select **DIAGNOSTICS** from menu; then in sequence select: **PERIPHERAL TESTS**, and then **PRINTER INTERFACE**. See diagram below.

Step 3. Follow instructions on the screen until test is completed.

If test fails, proceed to Chapter 5, Troubleshooting.
PERIPHERALS AND INTERFACES TESTS

GPIB Interface Test	This test verifies that the 371XXC printer interface is functioning cor-
	rectly.

Equipment Required:

GPIB cable (ANRITSU PN: 2100-2), or equivalent

CAUTION

Insure that no other cables are connected to either of the two rear panel GPIB ports when performing this test.

Procedure:

- *Step 1.* Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
- *Step 2.* Select **DIAGNOSTICS** from menu; then in sequence select: **PERIPHERAL TESTS**, and then **GPIB INTER-FACE**. See diagram below.

Step 3. Follow instructions on the screen until test is completed.

If test fails, proceed to Chapter 5, Troubleshooting.

Chapter 4 Performance Verification

Table of Contents

4-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
4-2	CALIBRATION AND MEASUREMENT CONDITIONS · · · · 4-3
	Standard Conditions $\cdots \cdots + 4-3$ Special Precautions $\cdots \cdots + 4-4$
4-3	PERFORMANCE VERIFICATION PROCEDURE · · · · · · 4-4
	Noise Floor/Receiver Dynamic Range Test · · · · · · · · · 4-5 Compression Test for 37147C, 37169C · · · · · · · · · · · · 4-9

Chapter 4 Performance Verification

This chapter provides specific procedures to be used to verify that the 371XXC is making accurate, traceable S-parameter measurements. You should perform the verification procedures in paragraph 4-3, "Verifying Measurement Accuracy," at least once annually. Much of the performance verification procedure is fully contained in the 2300-178 (3700Test.exe) program. This program also verifies the performance of the SM5392 and SM5235.

Additionally, this chapter includes procedures that may be used to measure the following key system performance parameters:

- □ Compression Level
- Description Noise Floor/Receiver Dynamic Range

Please ensure you have read and fully understand the servicing concepts for the 371XXC presented in Chapter 1 prior to continuing with this chapter.

4-2 CALIBRATION AND Extremes in the surrounding environmental conditions and the condition and stability of the test port connectors, through-cable, and calibration kit determine system measurement integrity to a large extent.

These are all user controlled conditions, and as such, should be evaluated periodically for impact on system performance. If these conditions vary significantly with time, the system verification procedures should be performed more often than the recommended annual cycle.

Standard Conditions The standard conditions specified below must be observed when performing any of the operations in this chapter—both during calibration and during measurement.

Warm-up Time: One hour minimum.

Environmental Conditions: Temperature: 23 +/- 3 deg C Relative Humidity: 20– 50% recommended.

4-1 INTRODUCTION

PERFORMANCE VERIFICATION PROCEDURE

4-3 PERFORMANCE

VERIFICATION PROCEDURE

Special Precautions	When performing the procedures in this chapter, observe the following precautions:
	Minimize vibration and movement of system and attached compo- nents and through-cable.
	Clean and check pin depth and condition of all adapters, through-cable(s), and calibration components.
	□ Pre-shape the through-cable(s) so as to minimize its movement dur- ing calibration and measurement activities.
	Ensure the system remains motion free in stable environmental conditions as defined above throughout warm-up, calibration, and measurement activities.

The following are the specific tests that should be used to verify the performance of the 371XXC. Equipment required for these tests is shown below.

Qty	Item
1	Computer/Controller as described in Table 1-1
1	ANRITSU 3652 Calibration Kit
1	EIP 548 Frequency Counter, with GPIB and Band 3 input
1	ANRITSU ML243XA
1	ANRITSU MA2474A
1	ANRITSU ND45331 Test Fixture Kit
1	ANRITSU ND45332 Test Fixture Kit
1	ANRITSU 3670K50-1 Through Cable
1	ANRITSU 3670K50-2 Through Cable
1	ANRITSU 41KC-10 with Option C
2	ANRITSU 43KC-3
1	ANRITSU 33KFKF50 Insertable
Step 1.	Connect Test Fixtures ND45331 and ND45332 to the 371XXC as shown in Figure 4-1 on the next page.
Step 2.	Launch the 2300-178 program (3700Test.exe).
Step 3.	Follow the instructions displayed by program. If problems occur at startup, refer to the *.doc file on the disk.

Step 4. Run all tests that are displayed. To launch a test, click on the label. All specifications and instructions are within the software. Pass/fail results and test data are saved in the host computer's C:\37000 folder.

Figure 4-1. Connecting the Test Fixtures

Noise Floor/Receiver Dynamic Range Test Noise Floor is the small signal response resulting from noise. It establishes the lowest level of signal detection. The Receiver Dynamic Range is the difference between the receiver compression level and the noise floor. This test verifies that the noise floor meets the guaranteed performance specifications.

Test Procedure Part A, Set Source Power Level

The following test uses a Power Meter to calibrate the Source output power setting at specified frequency points across the Frequency coverage range of the 371XXC.

- *Step 1.* Set up the equipment per Figure 4-2. Do not connect the Power Sensor to RF Out at this time.
- *Step 2.* Zero and calibrate the Power Sensor, then connect it to RF Out.
- Step 3. Press the Setup Menu key and select TEST SIGNALS.
- *Step 4.* Move the cursor to C.W. MODE and press the Enter key.

PERFORMANCE VERIFICATION PROCEDURE

Figure 4-2. Source Power Level Setup

Step 5. Set C.W. Frequency for the first frequency listed below;
22.5 MHz if this is the first time through this step. Set
C.W. Frequency for 2 GHz for the second time through,
20 GHz for the third time, and so on.

Frequency (GHz)	Rated Power Level (dBm)	Source Power Control Setting to Achieve Rated Power Level (dB)
0.0225	-18	
2.0	-12	
20.0	-12	
40.0	-15	

 Table 4-1.
 Source Power Control Settings

- **Step 6.** Adjust the source power control so that the power meter displays the power shown in the Rated Power Level column in the table above. Use the attenuator if necessary and set the appropriate Cal Factor on the power meter as required for each frequency.
- **Step 7.** Record the Source Power Control setting that gives the Rated Power in the last column of the table above.
- *Step 8.* Repeat Steps 5 through 7 for the rest of the frequencies listed in Step 5, above.

Test Procedure Part B, Noise Floor/Receiver Dynamic Range

The following test verifies the Receiver Dynamic Range and Noise Floor performance.

Step 1.	Set up the	equipment	per	Figure	4-3.
---------	------------	-----------	-----	--------	------

Figure 4-3. Noise Floor/Receiver Dynamic Range Setup

Step 2.	Set the	371XXC	as shown	below.
---------	---------	--------	----------	--------

Кеу	Menu Choice
CHANNEL MENU	SINGLE CHANNEL
S-PARAMS	S21 (Channel 1)

Step 3. Press the Begin Cal key.

- *Step 5.* When the CONFIRM CALIBRATION PARAMETERS menu appears, select TEST SIGNALS.
- *Step 6.* Set the POWER CONTROL selection to the power level recorded in Table 4-1 for the applicable frequency, then select RESUME CAL.
- *Step 7.* Follow the displayed prompts to complete the calibration.

Step 4. Select from the displayed prompts to perform a C.W. (1 POINT), STANDARD, COAXIAL, or TRANSMISSION FREQUENCY RESPONSE (S21) Calibration for the first frequency listed in Table 4-1, previous page. Set C.W. Frequency for 22.5 MHz if this is the first time through this step. Set C.W. Frequency for 2 GHz for the second time through, 20 GHz for the third time and so on. Note: When prompted for isolation devices, connect terminations to b2 and RF Out.

- *Step 8.* Disconnect the cable from b2 and RF Out and connect 50 ohm terminations to b2 and RF Out.
- *Step 9.* Set up the 371XXC as shown.

Кеу	Menu Choice
GRAPH TYPE	LOG MAGNITUDE
SET SCALE	RESOLUTION: 20 dB/DIV, REF VALUE: –80 dB
DATA POINT	POINT DRAWN IN C.W. 20
AVG/SMOOTH MENU	AVERAGING: 512 MEAS. PER POINT
AVERAGE	ON
VIDEO IF BW	MINIMUM

- *Step 10.* Press the Trace Memory key.
- *Step 11.* Select VIEW DATA and wait one complete sweep, then select STORE DATA TO MEMORY.
- **Step 12.** Select VIEW DATA (-) MEMORY. Note: Use the SELECT TRACE MATH menu option to change to VIEW DATA (-) MEMORY.
- *Step 13.* Allow one full sweep to occur, then press the Hold key.
- *Step 14.* Press the Marker Menu key and enable MARKER 1.
- *Step 15.* Press Readout Marker key, select MARKER TO MAX and record the value in the "Dynamic Range" column below.

Frequency (GHz)	Dynamic Range (dB)	Specification
0.0225		104
2		94
20		91
40		85

Step 16. Repeat Steps 3 through 15 for the rest of applicable frequencies listed in Step 15, above.

Step 17. Compute the Noise Floor for each frequency and record it in the table below. The formula is:

Noise Floor (dBm) = Rated Power (from Table 4-1 on page 4-6) - Dynamic Range

Example: For 22.5 MHz, max. PWR Level for 0.1 dB Compression is -12 dBm.

Frequency (GHz)	Noise Floor (dBm)	Specification
0.0225		-122
2		-106
20		-103
40		-100

Compression Test for 37147C, 37169C

Proceed as follows:

Preliminary

Step 1. Install the ND45331 to the Source Lock Output connector as shown on Figure 4-1.

Model 37147C Setup:

- *Step 1.* Remove the 10dB attenuator from the input of the ND45332, and install a model 43KC-6 in that position.
- *Step 2.* Install the ND45332 to the RF OUT and the B1 and B2 connectors of the 37147C (Figure 4-1).

Model 37169C Setup:

- *Step 1.* Remove all three 43KC-X pads from the ND45332 fixture, and install the fixture to RF OUT, B1 and B2 connectors of the 37169C (Figure 4-1).
- *Step 2.* For Both Models: Press DEFAULT PROGRAM key two times.

	Кеу	Menu Choice	
	SETUP MENU	Start 22.5 MHz; Stop 270 MHz 37147C: Test Signals/ Power Control -18dB 37169C: Test Signals/Power Control -16 dB	
	CHANNEL MENU	Dual Channels, 1 & 3	
	GRAPH TYPE	LOG MAGNITUDE, both channels	
	S-PARAMS	Ch1 = S12	
	SET SCALE	RESOLUTION: 0.1 dB per Division (both channels) REFERENCE VALUE: 0 dB LIMITS: Upper Limit ON; set to +0.1 dB (both channels) Lower Limit On, set to -0.1 dB, both channels	
Step 4.	Normalize Channel 1 by pressing the TRACE MEMORY key.		
Step 5.	Allow a few sweeps to occur.		
Step 6.	Select "Store Data to Memory", then "View Data/Memory".		
Step 7.	Repeat for Channel 3. Data will be a flat line on the 0dB reference line.		
Step 8.	Increase the Power Control by 10 dB (to -8 dB on the 37147C, or -6 dB on the 37169C).		
Step 9.	Ensure displays fall between the Limit Lines.		
Step 10.	Change the Start Frequency to 271 MHz and Stop Fre- quency to 20 GHz.		
Step 11.	Select "View Data" under the TRACE MEMORY key (for both channels).		
Step 12.	Set the Power Control as follows: 37147C: –11 dB 37169C: –13 dB		
Step 13.	Normalize the dis "View Data/Memo	plays ("Store Data to Memory", then ry")	
Step 14.	Raise the Power C or –3 dB on the 37	Control by 10 dB (to –1 dB on the 37147C, 7169C).	
Step 15.	Ensure all display	rs fall between the Limit Lines.	

Step 3. Set the instrument as shown in the following chart:

PERFORMANCE VERIFICATION

- **Step 16.** If the VNA is a model 37147C, the test is complete. Return the ND45332 to normal by reinstalling the 43KC-10 pad (model 37147C only). If the VNA is a model 37169C, continue with Step 17.
- **Step 17.** Set the Stop Frequency to 40 GHz , and the Start to 20 GHz.
- Step 18. Select "View Data."
- *Step 19.* Set the Power Control to –14 dB.
- *Step 20.* Normalize the display ("Store Data to Memory", then "View Data/Memory").
- **Step 21.** Increase the Power Control to –4 dB. Insure the data falls between the Limit Lines
- *Step 22.* Return the ND45332 fixture to normal (reinstall the 43KC-x pads, insuring the 10 dB pad is on the input to the splitter).

Chapter 5 Troubleshooting

Table of Contents

5-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
5-2	ASSOCIATED INFORMATION IN THIS MANUAL ••••• 5-4
5-3	RECOMMENDED TEST EQUIPMENT · · · · · · · · · · · · · · · 5-4
5-4	IF SYSTEM DOES NOT POWER-UP · · · · · · · · · · · · · · · · · · ·
	Line Source and Interface Checks \cdots \cdots $5-4$ Power Supply Voltages Check \cdots \cdots $5-4$ Power Supply Module Check \cdots \cdots \cdots $5-6$
5-5	IF SYSTEM DOES NOT BOOT-UP····································
	Boot-up Process Sequence5-7Troubleshooting Boot-up Problems5-8Hard Disk Problem 15-8Hard Disk Problem 25-9Floppy Disk Problems5-9Screen Display Problems5-9
5-6	IF SYSTEM PRODUCES AN ERROR CODE · · · · · · · · · 5-10
	Phase Lock Error Codes (6000 Series)
5-7	SIGNAL SOURCE, TEST SET, AND RECEIVER PROBLEMS····································
	Signal Source Phase Lock Loop Assemblies5-14Signal Source/Test Set Module Error Codes5-14Isolation Procedures5-16
5-8	IF A PERIPHERALS/ INTERFACE TEST FAILED · · · · · 5-18
	LCD Display Test Failures:5-18Front Panel Test Failures:5-18External Keyboard Interface Test Failures:5-18Printer Interface Test Failures:5-18GPIB Interface Test Failures:5-19
5-9	IF MEASUREMENTS ARE IN QUESTION •••••• 5-19
	Measurement Conditions Check List ••••••••• 5-19

Many of the troubleshooting procedures presented in this chapter require the removal of instrument covers to gain access to printed circuit assemblies and other major assemblies.

WARNING

Hazardous voltages are present inside the instrument when ac line power is connected. Turn off the instrument and remove the line cord before removing any covers or panels. Trouble shooting or repair procedures should only be performed by service personnel who are fully aware of the potential hazards.

CAUTION

Many assemblies in the 371XXC contain static-sensitive components. Improper handling of these assemblies may result in damage to the assemblies. *Always* observe the static-sensitive component handling precautions described in Chapter 1, Figure 1-2.

Chapter 5 Troubleshooting

5-1 INTRODUCTION

This chapter provides specific procedures to be followed when troubleshooting 371XXC VNA systems. While performing these procedures, always observe the warnings and cautions on the opposite page.

To use the troubleshooting procedures in this chapter:

- 1. Select the paragraph heading (starting with paragraph 5-4) that best describes the nature of the 371XXC VNA system fault. Refer to the Table of Contents page.
- 2. Perform the procedure contained in the selected paragraph. In general, the steps within each procedure should be followed in the order presented.
- 3. When removing and replacing the various assemblies and components specified by the troubleshooting procedures in this chapter, refer to Chapter 8, Remove and Replace Procedures, as necessary.
- 4. If a step cannot be successfully completed, stop; correct the immediate problem, and then continue on to the next step until all the appropriate steps in the procedure are completed.
- 5. After troubleshooting and correcting a problem, perform the procedures in Chapter 3, (Operational Tests) and Chapter 4 (Performance Verification), as appropriate. This should be done to insure that the system has been fully and correctly restored to proper operation.

The procedures described in this chapter provide a general approach to troubleshooting 371XXC VNA problems. They are particularly useful for problems where the 371XXC is only partially functional. The Internal Diagnostic Menus described in Appendix A are very useful for evaluating 371XXC system performance. They may be used alone, or in conjunction with the procedures in this chapter.

Please ensure you have read and fully understand the servicing concepts for the 371XXC presented in Chapter 1 prior to continuing with this chapter.

Troubleshooting procedures for the millimeter wave feature are provided in Appendix E.

<i>5-2</i>	ASSOCIATED INFORMATION IN THIS	While using the troubleshooting procedures in this chapter, also refer to the following information:		
	MANUAL	Appendix A, Diagnostics Menus, fully describes the 371XXC Di- agnostics menu tree, including the SERVICE LOG menu.		
		□ App 3712	endix B, Error Codes and Messages, for details on each of the XXC hardware related error messages.	
		□ Cha the :	pter 6, System Description, for a brief technical description of 371XXC VNA system operation.	
<i>5-3</i>	RECOMMENDED TEST EQUIPMENT	The recom sented in	mended test equipment for the troubleshooting procedures pre- this chapter is listed in Chapter 1, Table 1-1 (page 1-8).	
5-4	IF SYSTEM DOES NOT POWER-UP	If the 3712 and the Pe below.	XXC does not power-up when connected to a source of AC power ower key is pressed, perform the power supply checks described	
			WARNING	
		H w aı pa sh fu	azardous voltages are present inside the instrument hen ac line power is connected. Turn off the instrument and remove the line cord before removing any covers or anels. TROUBLE-SHOOTING or repair procedures hould only be performed by service personnel who are ally aware of the potential hazards.	
	Line Source and Interface Checks	Check as f	ollows:	
		Step 1.	Verify that the AC power source is providing stable power at the correct line voltage.	
			NOTE	
			The 371XXC is designed to automatically sense and operate with AC power line volt- ages in the range of 85 - 240 VAC, with a frequency of 48 - 63 Hz (540 VA maximum).	
		Step 2.	Verify that the power input cord is in good condition.	
		Step 3.	Ensure that the system power line fuse is installed, that it is not open, and that it is the correct value (8 A, Slow Blow).	
	Power Supply Voltages Check	Verify tha	t the 371XXC power supply voltages are correct as follows:	
	_	Step 1.	Press the 371XXC Power key off , and disconnect the power input cord from the 371XXC. ensure all external connections to the system front and rear panel are also disconnected.	

- **Step 2.** Remove bottom panel, and lay the system down on its left (monitor) side. Refer to Chapter 8, Remove and Replace Procedures.
- *Step 3.* Reconnect the power line input cord to the system and Press the 371XXC Power key **on**.
- **Step 4.** Using a DMM or an oscilloscope, measure the DC power supply voltages listed in Table 5-1. Connect the DMM/oscilloscope to the top of the cable connectors at J13 and J4 on the Motherboard (A17). Refer to Figure 5-1 and Table 5-1.

Connect To:			DO Cumulu Voltore	AC Ripple and
Conn	Com (Pin)	Meas (Pin)	DC Supply voltage	Noise
J13	8	16	0 Vdc	50 mVpp
J13	8	1	+4.8 Vdc +1% / -0%	50 mVpp
J4	4	1	+9 Vdc +5% / –0%	5 100 mVpp
J4	4	6	+18 Vdc +10% / -0%	5 100 mVpp
J4	4	10	-18 Vdc +10% / -0%	5 100 mVpp
J4	4	12	+27 Vdc +5% / -0%	5 100 mVpp
J4	4	14	–27 Vdc +5% / –0%	5 100 mVpp

Figure 5-1. Location of Connectors for Power Supply Voltage Checks

Step 5. Connect the common lead of the oscilloscope to J13, pin 8. Measure the Power Supply Sync signal (PS_SYNC) on J13, pin 14:

Specification: 2-4 vpp Sine Wave at 109.89 KHz

IF SYSTEM DOES NOT BOOT-UP

	T P si te	NOTE he power supply module will power-up without the S_SYNC signal being present. However, the lack of this gnal will introduce signal purity problems when the sys- em is performing measurements.
Power Supply Module Check	If any of the operating the proceed	he DC voltage tests fail, verify that the power supply module is properly with minimal impact from the system as described in lures below.
		NOTE
	If cu su	a power supply voltage is low, it may be due to excessive urrent draw from the system and not a fault in the power upply.
	Steps 1 tł supplies:	brough 4 verify the operation of the + 9, \pm 18, and \pm 27 Vdc
	Step 1.	Press the 371XXC Power key off , and disconnect the power input cord.
	Step 2.	Disconnect the power supply module from the A17 Mother- board at J4.
	Step 3.	Reconnect the power line input cord to the system and press the 371XXC Power key on .
	Step 4.	Using a DMM and/or an oscilloscope, measure the power supply voltages at the power supply connector pins that correspond to the Motherboard pins for the $+$ 9, \pm 18, and \pm 27 Vdc supplies. Refer to Table 5-1 and Figure 5-1 (previous page).
	Steps 5 th quires at ital PCBs stalled in	nrough 8 check the +5 volt supply. This power supply re- least a 10% load to turn on. Therefore, at least one of the dig- A9, A13, or A14 (which use the 5 volt supply) must be in- the system during this procedure.
	Step 5.	Press the 371XXC Power key off , and reconnect the power supply module to the Motherboard at J4.
	Step 6.	Unplug digital PCB's A13 and A14.
	Step 7.	Press the 371XXC Power key on .
	Step 8.	Using a DMM and/or an oscilloscope, measure the +5 volt power supply at connector J13 on the Motherboard. Refer to Figure 5-1 and Table 5-1.
	Step 9.	Press the 371XXC Power key off , and reinstall the A13 and A14 PCB's removed in Step 6.

TROUBLE- SHOOTING	IF SYSTEM DOES NOT BOOT-UP
	If any of the DC voltage tests fail in steps 1 through 8 above, replace the power supply module.
	If any of the DC voltage tests fail with the power supply module con- nected to the 371XXC Motherboard, but pass with it disconnected, then the most probable cause of the failure is that one of the 371XXC assemblies is demanding an excessive amount of current. To locate the failed assembly:
	1. Press the 371XXC Power key off, and unplug a single assembly.
	2. Press the 371XXC Power key on , and note if the failed power sup ply functions normally.
	3. Repeat Steps 1 and 2 until an assembly is found that clears the power supply failure. The removed assembly is suspect and should be replaced.
5-5 IF SYSTEM DOES NOT BOOT-UP	If the 371XXC does not boot-up when it is powered-up, perform the checks described below.
Boot-up Process Sequence	The boot-up process is controlled by the firmware located on the A9 PCB assembly (processor PROM). The boot-up activities include:
_	Testing and initializing the A9 Main Processor PCB
	Testing communication between the A9 PCB and the digital PCB assemblies (A13, A14, A15, A16). The following messages will be displayed at this juncture:
	■ Initializing front panel knob (A14/A20)
	■ Initializing GPIB (A13/A18)
	 Initializing external keyboard (A13)
	■ Initializing external trigger (A13/A5)
	■ Initializing front panel (A14/A20)
	□ Loading of system software from disk into memory
	□ Starting operation of the system software.
	□ System is booting—message is displayed.
	At this point, the system software continues the boot-up process by performing the following activities:
	Issues command to A15 PCB to change display from TEXT mode to GRAPHIC mode and display ANRITSU logo.
	 Performs basic communication tests between the digital system (A13, etc.) and the analog subsystem (A1-A8, A21A1, A21A2);

□ Conducts an IF Calibration

this is part of a minimal self test.

IF SYSTEM DOES NOT BOOT-UP

	□ Res the	ets and loads the front panel state that was in effect prior to last power down
	□ Sta	rts the measurement process
	T tu a p	NOTE The system software fully controls the 371XXC VNA sys- em after boot-up (with operator intervention and guid- nce). The system software is only loaded once upon initial ower up.
Troubleshooting Boot-up Problems	To start t following	he troubleshooting of boot-up related problems, perform the preliminary checks:
	1. Note boot	e any error messages displayed on the LCD display during the -up process.
	2. Obse cess not e	erve the front panel and the display during the boot-up pro- for information as to which part of the process failed or did execute.
	3. Veri: para supp	fy that the system power supplies are working properly as per graph 5-4, above. Note particularly the operation of power plies immediately after power-up.
	4. Try and	to boot the instrument from the floppy disk and repeat steps 1 2 above.
	Upon con lowing pi	npletion of the preliminary checks (above), perform the fol- cocedures, as appropriate.
Hard Disk Problem 1	If a hard the system	disk problem is indicated during bootup from a floppy disk, but m can bootup correctly from the hard disk:
	Step 1.	Boot up from the hard disk, then format the hard disk us- ing the procedure below.
		CAUTION
	F d fi	'ormatting the hard disk will erase all files on the hard lisk. Before starting the disk formatting process, copy any iles you wish to save to a floppy disk.
	Step 2.	Press the Utility Menu key (System State key group) to dis- play the UTILITY FUNCTIONS OPTIONS menu. From menu, select GENERAL DISK UTILITIES (see below).
	Step 3.	If FLOPPY DISK UTILITIES menu appears, select HARD DISK UTILITIES.

Step 4. From HARD DISK UTILITIES menu, select FORMAT HARD DISK.

Step 5. After formatting is complete, reload System Software from the master floppy diskettes. Retry boot-up. If it fails, contact ANRITSU Customer Service Center.

Hard Disk Problem 2 If system does not bootup from hard disk and floppy disk:

- **Step 1.** When the five initializing messages are displayed after power on, press any key within two seconds. Follow the on screen instructions to format the hard disk and re-load the System Software from the Master diskettes. If bootup still fails, go to the next step.
- *Step 2.* Replace the A16 Hard Disk PCB.
- *Step 3.* If bootup still fails, contact the nearest ANRITSU Customer Service Center.

Floppy Disk Problems If a floppy disk problem is indicated during bootup from floppy disk but the system is able to bootup from the hard disk:

- *Step 1.* Ensure the floppy disk media is in good condition
- *Step 2.* Verify disk drive connection at Motherboard connector J2.
- *Step 3.* Retry boot-up. If it fails, replace the A13 I/O#1 PCB.
- *Step 4.* Retry boot-up. If it fails, replace the Floppy Disk Drive.

Screen Display
ProblemsIf the 371XXC system appears to have no screen display, perform the
preliminary check below and then perform checks 1 - 3, as appropriate:

Preliminary Check - Press the 371XXC Power key **off** and then **on** several times. Each time power is reapplied, pause and wait for the

IF SYSTEM PRODUCES AN ERROR CODE

371XXC software system to boot-up. During boot-up, observe the top left hand portion of the LCD display.

NOTE

An alternative method to reset and re-boot the software system is to press the red button on the A9 Main Processor PCB. Observe the messages displayed on the screen during the boot-up process. Verify that the following messages are present:

- Initializing front panel knob (A14/A20)....
- Initializing GPIB (A13/A18)....
- Initializing external keyboard (A13)....
- Initializing external trigger (A13/A5)....
- *Check 1:* If during boot-up the 371XXC does not attempt to display any messages at all, proceed as follows:
 - *Step 1.* Replace the A15 Graphics Processor PCB.
 - *Step 2.* Retry boot-up. If it fails, replace the LCD.
 - *Step 3.* Retry boot-up. If it fails, replace the A9, Main Processor PCB.
 - *Step 4.* Retry boot-up. If it fails, contact ANRITSU Customer Service Center.
- *Check 2:* If the system halts before it completes all five digital sections, process as follows:
 - **Step 1.** Replace the PCB indicated on the last displayed message. Example: If the system halt at the "Initializing front panel knob (A14/A20)....," replace the A14 and A20 PCBs.
 - *Step 2.* Retry to boot the system. If it still fails, contact ANRITSU Customer Service.

5-6 IF SYSTEM PRODUCES AN ERROR CODE If the 371XXC detects a problem during normal operation, an error message consisting of an error code followed by a brief error message will be displayed on the screen. The error code will also be written to the service log along with some of the operating data gathered from the system at the time of failure. Note that as a reference signal must be applied to either the A1 or A2 input for the system to source lock, it is normal for error codes to be generated whenever a reference signal is not applied to A1 or A2. Install the ND45331 to prevent these phase lock error codes.

System error codes in the range 0100 - 3999 identify the suspected failed subassembly in the two most-significant digits of the error code. For example: error codes 0200 - 0299 are related to the A2, LO2 PCB

TROUBLE-SHOOTING

assembly. This error code assignment scheme allows for quick identification of suspect assemblies.

NOTE

Refer to Appendix B, Error Codes/Messages, for a list of the error codes/messages for 37100A VNA systems.

There are cases when a fault on one assembly will cause a different assembly to be identified as faulty (per the error code designated). This happens when a failure occurs on an assembly that provides a stimulus or a calibration signal to other assemblies in the system. Example: the A7 LO3 PCB provides the IF Calibration signal to the A3, A4, and A6 PCB's. If the IF Cal signal is faulty, error codes will be reported for the A3, A4, A6, and A7 PCB's.

NOTE

An aide to troubleshooting system failures using error codes is a good understanding of system and subassembly operation. Refer to the descriptions of system and subassembly operation and block diagrams located in Chapter 7, System Description.

Self Test Error Codes Error codes 0100 - 3999, with few exceptions, are produced as a result of a failure when the system self test is run. These error codes will **not** be displayed on the LCD screen. Only the overall result of the self test (PASS/FAIL) will be displayed at the conclusion of the self test. However, any error codes due to the self test will be written to the service log as the self test is executed.

NOTE

The exceptions are error codes with 00 in the two least-significant digits, for example: 0500 A/D CONVER-SION FAIL. These errors are produced at run time if a problem is encountered when the system is actively making measurements.

Phase Lock ErrorThe Phase Lock error codes (6000 - 6999) will have an alphabetical
suffix (code) following the message. For example: 6079 PHS LCK FAIL
ABCDG. This code consists of one or more letters from A - G that rep-
resent the sub assembly that was not locked and/or the nature of the
failure.

SIGNAL SOURCE, TEST SET, AND RECEIVER PROBLEMS

The phase lock failure mode suffixes are listed below:

Failure Suffix	Failed Assembly/ Failure Mode	Failure Suffix	Failed Assembly/ Failure Mode
А	10 MHz not present	Е	IF lock signal level too low
В	L01 unlocked	F	Ext synthesizer unlocked
С	L02 unlocked	G	L03 unlocked
D	Source unlocked	none	Unknown

Table 5-2. Phase Lock Failure Suffixes

Note that most phase lock error codes will normally consist of a letter identifying the unlocked assembly and the **D** and/or **DE** letters that indicate the Source Module is also unlocked. This is normal since all components in the phase lock loop must be correctly locked in order for the Source Module to achieve lock. Example 1: Any of the following error messages indicate that the LO1 PCB assembly was not able to lock:

6002 PHS LCK FAIL B 6010 PHS LCK FAIL BD 6026 PHS LCK FAIL BDE

Also note that if the 10 MHz Reference fails, depending on the failure, the system will not be able to lock any of the phase lock loop components: A1, A2, A7, A8, or Source Module. Example 2: Either of the following error messages indicate a 10 MHz Reference problem:

```
6001 PHS LCK A
6015 PHS LCK ABCDG
```

Service Log Snap Shot Data Error codes will be written to the service log along with some data representing a "Snap Shot" of system conditions at the time of failure. Usually, the data included in the snap shot helps to provide faster diagnosis of the error condition. The common snap shot data items that will be useful in assembly level troubleshooting and fault diagnosis efforts are listed in Table 5-3 below.

Item	Description
SWP	Sweep direction: F = forward (S11, S21), R = reverse (S22, S12)
PWR	System source power setting
SYS	System frequency setting
A	The calibration results for the Test A Channel PCB (A3): This is a series of 16 values divided into groups of four. Each group should have values that are approximately $\frac{1}{4}$ that of those in the previous group.
	The first group data values should be approximately: $1.00 \ 0.00 \ 0.00 \ 1.00$. The values of the next group should be $\frac{1}{4}$ that of those values i.e., $0.25 \ 0.00 \ 0.00 \ 0.25$. The same applies for the values in the remaining two groups.
В	The calibration results for the Test B Channel PCB (A6). See description for "A" above.
R	The calibration results for the Reference A (or B) Channel PCB (A4). See description for "A" above.
<ovl></ovl>	Indicates the value was too far out of range to be measurable.
PHSLCK	Source Locking mode: L = Source Lock mode, T = Tracking mode, S = Set on mode

Table 5-3. Common Snap Shot Data Items

NOTE

Some of the data included in the snap shot is useful only for factory troubleshooting activities.

5-7 SIGNAL SOURCE, TEST SET, AND RECEIVER PROBLEMS Because of the 371XXC phase-lock loop structure, it is not easy to distinguish between failures that occur in the Source Module, the Test Set Module and the Receiver Module. In order to troubleshoot failures occurring in this group of modules, it is essential to be familiar with how each module functions and how it interacts with the other modules. Refer to Chapter 7, System Description, for a functional description of each module.

371XXC MM

5-13

SIGNAL SOURCE, TEST SET, AND RECEIVER PROBLEMS

Signal Source	Phase
Lock Loop Asse	mblies

The 371XXC assemblies that contain circuits that are part of the signal source phase-lock loop (Source Lock function) are listed in Table 5-4.

Table 5-4. 371XXC Assemblies

Assemblies	Location
A21A1 Source YIG/Bias PCB	Source Module
A21A2 Source Control	Source Module
YIG Oscillator	Source Module
Switched Filter	Source Module
Down Converter	Source Module
Switched Doubler Module SDM*	Test Set Module
Power Splitter	Test Set Module
Buffer Amplifier	Receiver Module
A1 LO1 PCB	Receiver Module
A2 LO2 PCB	Receiver Module
A4 Reference IF PCB	IF Section
A8 Source Lock/Signal Separation Control PCB	Analog Subsystem
A9 Main Processor PCB	Digital Subsystem
* Model 37169C only	

Failures occurring in the Source Module, Test Set Module and Receiver Module will generally cause the system to produce "Phase Lock Fail" error codes. Included with the Phase Lock Fail error codes are alphabetical suffixes that indicate the probable malfunctioned sub-assembly.

Example: 6008 PHS LCK FAIL D

The letter "D" in the error code above indicates that the failure is possibly in the Source Module. (Refer to Table 5-2.)

Signal Source/Test Set Module Error Codes

Failures occurring in the Signal Source Module and Test Set Module will also produce the error code listed below.

Error Code	Possible Failed Assemblies
5110 RF PWR UNLEVELED	All components in Source Module and Test Set Module

SIGNAL SOURCE, TEST SET, AND RECEIVER PROBLEMS

NOTES

If the 5110 error code is displayed when the Port 1 power level is set above the default power level, it does not indicate a failure. In this case, the 5110 error code is similar to the RF unleveled indicator on the Synthesizer or Sweep Generator.

The 371XXC has extensive built-in troubleshooting tools that are useful for troubleshooting the failure listed in Table 5-5. These and other troubleshooting tools are accessed from the Option Menu key, which is part of the enhancement keygroup. (From the select OPTIONS menu select **DIAGNOSTICS**, then select **TROUBLESHOOTING**). Refer to Appendix A.

Troubleshooting tools that are available from the TROUBLE-SHOOTING menu that are useful for locating faults occurring in the Source Module, Test Set Module and Receiver Module are:

NOTE

The troubleshooting tools listed below are used to test the 371XXC to factory set limits when the ANRITSU 37100C Test Software (2300-178) is run.

When run from the TROUBLESHOOTING menu, not all tests will display limit lines (as is the case when the 37100C Test Software 2300-178 is used).

NON-RATIO PARAMETERS

This function displays the output of each of the individual test set channels. It is especially useful for verifying the performance of the Buffer Amplifier and Power Amplifier.

NOTE

Installation of Test Fixtures ND45331 and ND45332 to the 37100C is required for this check.

By examining these displays in conjunction with other failure symptoms, the failed assembly can be located.

Example: Suppose the Non-Ratio Parameter screen display shows power holes above 270 MHz on all traces and in both sweep directions. A possible cause for this condition is a failure of the Power Amplifier assembly at certain frequencies. (Refer to Analog Subsystem Block Diagram in Figure 7-2 on page 7-6).

L01

This function allows user to verify whether the A1 LO1 PCB is operating properly.

LO2

This function allows the user to verify whether the A2 LO2 PCB is operating properly.

SOURCE

This function allows the user to verify whether the Source Module is operating properly.

Isolation Procedures The procedures in the following paragraphs will help you isolate the fault to the major assembly.

- *Check #1* **Proceed as follows:**
 - *Step 1.* Press Option Menu key and select the DIAGNOSTICS menu option.

- **Step 2.** Select the READ SERVICE LOG menu option to display the error entry associated with the system failure. Observe the snap shot data included as part of the error entry and note the sweep direction indication for each error code. (Refer to the Service Log Snapshot Data, page 5-13)
- *Step 3.* Determine whether the failure occurs during forward measurements (S11, S21) and/or reverse measurements (S22, S12):
 - If the problem occurs in both directions at all frequencies, the fault could be in the Receiver Module, Signal Source Module, or Test Set Module.
 - If the problem occurs in both directions at only certain frequencies, the fault could be in the Signal Source Module.
 - If the problem occurs in only one direction, the fault could be the buffer/power amplifier assembly.

Step 4. Run the 37XXX Test Software (2300-178) program to verify operation of the Buffer Amplifier, A1 LO1 PCB, A2 LO2 PCB, and Source control PCB.

Use the information obtained in steps 1 – 4 above to determine whether the failure occurs in the Source Module, Test Module or Receiver Module. Replace the suspected failed assembly, and perform any required adjustment(s). Then retest. If the 371XXC still fails, contact ANRITSU Customer Service Center for further assistance.

NOTE

To obtain technical service support from your nearest ANRITSU Customer Service Center, refer to Chapter 2, Service Support Information.

Check #2 If you have determined that the failure occurs in both sweep directions, *only at certain frequencies*, and that Error Code 5110 is recorded in the Service Log, use the following procedures to determine which assembly may have failed:

Step 1.	Set the 371XXC Start and Stop frequencies for the follow-
_	ing bands:

Band	Start	Stop
1	22.5/40 MHz	2.0 GHz
2	2.0 GHz	Upper band-edge frequency for model. (20 GHz for 37169C)
3	20.0 GHz	40.0 GHz (for Model 3716CA only)

Step 2. If the problem occurs in Band 1, replace the Down Converter assembly and repeat test.

If it fails, contact ANRITSU Customer Service Center.

Step 3. If the problem only occurs in Band 3, replace the Switched Doubler Module assembly and repeat test.

If it fails, replace Switched filter and repeat test.

If it fails, contact ANRITSU Customer Service Center.

Step 4. If the problem only occurs in Band 2, replace Switched Filter assembly and repeat test.

If it fails, contact ANRITSU Customer Service Center.

IF MEASUREMENTS ARE IN QUESTION

After replacing a component, perform a Frequency Calibration and a RF power/ALC Calibration. Refer to Chapter 6, Adjustments.

- *Check #3* If you have determined that failure occurs in both sweep directions, *at all frequencies* and Error Code 5110 is recorded in the Service Log, the failed component could be any of the following assemblies:
 - 1. Switched Doubler Module
 - 2. YIG Oscillator
 - 3. A21A1 YIG Bias PCB
 - 4. A21A2 Source Control PCB

Replace the components listed above in sequence. After each replacement recalibrate the unit (see note above) and retest. If the 371XXC still fails, contact your nearest ANRITSU Customer Service Center.

5-8	IF A PERIPHERALS/	The following paragraphs contain procedures to be used for troubleshoot-
	INTERFACE TEST	ing 371XXC peripheral or interface test failures. Select the paragraph
	FAILED	subheading that corresponds to the test that failed.

- *LCD Display Test* If the LCD Display Test failed, troubleshoot as follows: *Failures:*
 - Step 1. Replace LCD display.
 - *Step 2.* Perform the LCD Test again; if it fails, replace the A15, Graphics Processor PCB.
 - *Step 3.* Perform the LCD Test again; if it fails, contact ANRITSU Customer Service Center.

Front Panel Test If the Front Panel Test failed, troubleshoot as follows: *Failures:*

- Step 1. Replace the Front Panel Assembly.
- *Step 2.* Perform the Front Panel Test again; if it fails, replace the A14, I/O#1 PCB.
- *Step 3.* Perform the Front Panel Test again; if it fails, contact ANRITSU Customer Service Center.

External Keyboard If the External Keyboard Interface Test failed, troubleshoot as follows: *Interface Test Failures:*

Step 1. Perform the External Keyboard Interface Test again; if it fails, replace the A13, I/O#1 PCB.

~

5-9

	<i>Step 2.</i>	Perform the External Keyboard Interface Test again; if it fails, contact ANRITSU Customer Service Center.
Printer Interface Test Failures:	If the Printer Interface Test failed, troubleshoot as follows:	
	Step 1.	Replace the A18, Rear Panel PCB.
	Step 2.	Perform the Printer Interface Test again; if it fails, replace the A13, I/O#1 PCB.
	Step 3.	Perform the Printer Interface Test again; if it fails, contact ANRITSU Customer Service Center.
GPIB Interface Test Failures:	If the GP	IB Interface Test failed, troubleshoot as follows:
	Step 1.	Replace the A18, Rear Panel PCB.
	Step 2.	Perform the GPIB Interface Test again; if it fails, replace the A13, I/O#1 PCB.
	Step 3.	Perform the GPIB Interface Test again; if it fails, contact ANRITSU Customer Service Center.
IF MEASUREMENTS ARE IN QUESTION	 ARE If the 371XXC measurement quality is suspect, the following paragraphs provide guidelines and hints for determining possible measurement quality problems. The quality of 371XXC VNA measurements is determined by the following test conditions and variables: 	
	🗆 Con	dition of the 371XXC.
	Qua tors	lity and condition of the interface connections and connec-
	□ Qua thro	lity and condition of the calibration components, ugh-lines, adapters and fixtures.
	□ Suri sure	rounding environmental conditions at the time of the mea- ement.
	□ Sele mea	ction and performance of the calibration for the DUT being sured.
Measurement Conditions Check List	When determining possible measurement problems, check the fing items:	
	1. Chec	k the DUT and the calibration conditions:
	□ E be	nsure the Calibration Components Coefficients data has een installed into the system from the Calibration Kit in use.
	□ E m	nsure the proper calibration was done for the device being beasured:

IF MEASUREMENTS ARE IN QUESTION

- For high insertion loss device measurements the calibration should include isolation, high number of averages, and lower IF Bandwidth settings during the calibration.
- For high return loss device measurements the calibration should also include a sliding load calibration.
- □ Check DUT mating connector(s) condition and pin depth.
- □ Measure an alternate known good DUT, if possible.
- □ Check if the environment is stable enough for the accuracy required for the DUT measurement.
 - The system should not be subjected to variations in temperature.
 - The system should not be placed in direct sun light or next to a changing cooling source, such as a fan or air conditioning unit.
- 2. Check the calibration using known good components from the calibration kit. If measurements of these devices do not produce good results:
 - □ Check through-cable stability including condition and pin depth. Replace with a known good cable, if necessary.
 - □ Check condition and pin depth of calibration kit components. Replace with known good components, if necessary.
 - □ Check condition and pin depth of test port connectors. Replace with known good ones if necessary.

NOTE

The procedures for performing pin depth measurements for the connectors used on ANRITSU products are contained in Appendix C, Connector Maintenance Check Procedures.

- 3. Check the system performance as follows:
 - □ Perform the 2300-178 tests. Refer to Chapter 4, Performance Verification.
 - □ Check Compression Level and Dynamic Range as described in Chapter 4, Performance Verification.
 - □ Complete the remaining checks described in Chapter 4, Performance Verification.

Chapter 6 Adjustments

Table of Contents

6-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
6-2	LO1 CALIBRATION · · · · · · · · · · · · · · · · · · ·
	Calibration Procedure· · · · · · · · · · · · · · · · · · ·
6-3	LO 2 CALIBRATION · · · · · · · · · · · · · · · · · · ·
	Calibration Procedure· · · · · · · · · · · · · · · · · · ·
6-4	FREQUENCY CALIBRATION · · · · · · · · · · · · · · · · · · ·
	Calibration Procedure· · · · · · · · · · · · · · · · · · ·
6-5	RF POWER/ALC CALIBRATION · · · · · · · · · · · · · · · · · · ·
	Calibration Procedure6-8Post Calibration Actions6-10
6-6	SOURCE LOCK THRESHOLD CALIBRATION · · · · · · · · 6-11

Chapter 6 Adjustments

6-1 INTRODUCTION This chapter contains five procedures that are used to restore the calibration of the 371XXC signal source and the related source lock system assemblies. Use these procedures after various signal source related assemblies have been replaced due to troubleshooting or repair activities. Perform these calibrations in the order presented. Please insure you have read and fully understand the servicing concepts for the 371XXC presented in Chapter 1 prior to continuing with this chapter. 6-2 LO1 CALIBRATION This procedure uses the 371XXC internal diagnostics and calibration menus to adjust the A1 1st LO PCB assembly. Perform this calibration procedure if: □ The A1 PCB is replaced. □ BBRAM chip on A9 Processor PCB is replaced and the LO1 Calibration data was not previously saved on disk (that is, data is not available for recall from a floppy disk). Calibration Perform the following steps: **Procedure Equipment Required** None NOTE Allow the 371XXC to warm-up at least 30 minutes prior to

performing calibration.

Procedure

- *Step 1.* Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
- *Step 2.* Select **DIAGNOSTICS** from menu. Then select in sequence: **H/W CALIBRATIONS** then **LO1 CALIBRATION**.
- *Step 3.* Follow the directions displayed on the 371XXC LCD, until calibration is completed.

Post Calibration Actions	After the calibration process is completed, perform the following ac- tions, as appropriate:		
	<i>If calibration passes:</i> Save the calibration data to (hard) disk, as follows:		
	Step 1.	Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.	
	Step 2.	Select DIAGNOSTICS from menu. Then select in se- quence: H/W CALIBRATIONS DISK OPERATIONS SAVE TO HARD DISK HW_CAL.LO1.	
		NOTE	
		Also save the calibration data to floppy disk for archival purposes as a backup in case of a hard disk failure. Label the disk with cali- bration type, date, and system model and se- rial numbers. Set the copy protect tab on the disk. Properly safeguard the disk so that it will be available for later use, as needed.	
	If calibration fails:		
	Step 3.	Repeat the calibration. If it still fails, then proceed to Chapter 5, Troubleshooting.	
6-3 lo 2 calibration	This procedure uses the 371XXC internal diagnostics and calibration menus to adjust the A2 2nd LO PCB assembly. Perform this calibra- tion procedure if:		
	□ The	A2 PCB is replaced.	
	 BBRAM chip on A9 Processor PCB is replaced and the LO2 Calibration data was not previously saved on disk (that is, data is not available for recall from a floppy disk). Perform the following steps: 		
Calibration Procedure			
	Equipme	ent Required	
	None		
	A	<i>NOTE</i> llow the 371XXC to warm-up at least 30 minutes prior to erforming calibration.	

Procedure

- *Step 1.* Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
- *Step 2.* Select **DIAGNOSTICS** from menu. Then select in sequence: **H/W CALIBRATIONS** then **LO2 CALIBRATION**.
- *Step 3.* Follow the directions displayed on the 371XXC LCD, until calibration is completed.
- Post CalibrationAfter the calibration process is completed, perform the following ac-
tions, as appropriate:

If calibration passes:

Save the calibration data to (hard) disk, as follows:

- *Step 1.* Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
- *Step 2.* Select **DIAGNOSTICS** from menu. Then select in sequence: **H/W CALIBRATIONS** |**DISK OPERATIONS** |**SAVE TO HARD DISK**|**HW_CAL.LO2**.

NOTE

Also save the calibration data to floppy disk for archival purposes as a backup in case of a hard disk failure. Label the disk with calibration type (LO2), date, and system model and serial numbers. Set the copy protect tab on the disk. Properly safeguard the disk so that it will be available for later use, as needed.

If calibration fails:

Step 3. Repeat the calibration. If it still fails, then proceed to Chapter 5, Troubleshooting.

This procedure uses the internal 371XXC diagnostics and calibration menus, in conjunction with a suitable frequency counter, to adjust the signal source frequencies throughout the range of the 371XXC model being calibrated. Perform this calibration procedure if:

- **□** The Source FM/Lock Linearity test in 2300-178 program, fails.
- □ Other testing or troubleshooting reveals a possible problem with the signal source frequency accuracy or phase lock loop.
- □ Any of the following assemblies are replaced:

6-4 FREQUENCY CALIBRATION

- A21A1 Source YIG/Bias
- A21A2 Source Controller
- Down Converter
- YIG Oscillator
- Switched Filter
- BBRAM chip on the A9 Processor PCB is replaced and the Source Frequency Cal was not previously saved on disk (thus data could not be recalled from disk).

Calibration Procedure If an SM5235 or SM5392 is installed with the 37100C, remove the SM test set and configure the 37100C to Internal Test Set (Option Menu key).

Equipment Required

Refer to Table 1-1 for further information about the following equipment:

- □ EIP Frequency Counter, or equivalent (Anritsu Model MF241XB Frequency Counter may be used if the 37100C operating software is version 4.00 or above.)
- □ RF/Microwave Cable
- □ GPIB cable, ANRITSU 2100-2, or equivalent

NOTE

Allow the 371XXC and Frequency Counter to warm-up for at least 30 minutes prior to performing calibration.

Procedure

Figure 6-1. Equipment Set-Up for Frequency Calibration
ADJUSTMENTS

- *Step 2.* Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
- *Step 3.* Select **DIAGNOSTICS** from menu; then select in sequence: **H/W CALIBRATION**, and then **SOURCE FREQUENCY CALIBRATION** (next page).
- *Step 4.* Follow the directions displayed on the screen to set-up and connect the frequency counter to the 371XXC.
- *Step 5.* Select **START SOURCE FREQ CALIBRATION** from the menu (above).
- *Step 6.* Follow the directions displayed on the 371XXC LCD screen until calibration is completed.
- Post CalibrationAfter the calibration process is completed, perform the following ac-
tions, as appropriate:

If calibration passes:

Save the calibration data to (hard) disk, as follows:

- *Step 1.* Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
- *Step 2.* Select **DIAGNOSTICS** from the menu. Then select in sequence: **H/W CALIBRATIONS** |**DISK OPERATIONS** |**SAVE TO HARD DISK** |**HW_CAL.FRE.**

NOTE

Also save the calibration data to floppy disk for archival purposes as a backup in case of a hard disk failure. Label the disk with calibration type (FRE), date, and system model and serial numbers. Set the copy protect tab on the disk. Properly safeguard the disk so that it will be available for later use, as needed.

ADJUSTMENTS

POWER/ALC CALIBRATION

	If calibration fails:
	Verify that the frequency counter is functioning correctly, the ca- ble is in good condition, and all connections are secure.
	Note which calibration step failed from the screen messages.
	Repeat the calibration. If it still fails, then proceed to Chapter 5, Troubleshooting.
6-5 RF POWER/ALC CALIBRATION	This procedure uses the 371XXC internal diagnostics and calibration menus, in conjunction with a suitable power meter, to adjust the output power level of the signal source throughout the range of the 371XXC model being calibrated. Perform this calibration procedure if:
	The RF Power Accuracy Test in 2300-178 program fails.
	Other testing or troubleshooting reveals a possible problem with RF Power accuracy or the ALC loop.
	Any of the following assemblies are replaced:
	■ A21A1 Source YIG/Bias
	■ A21A2 Source Controller
	Down Converter
	■ YIG Oscillator
	 Switched Filter
	Power Splitter
	■ SDM (37169C)
	BBRAM chip on the A9 Processor PCB is replaced and the Source ALC Cal was not previously saved on disk (thus data could not be recalled from disk).
Calibr Proc	<i>ration</i> If an SM5235 or SM5392 is installed with the 37100C, remove the SM test set and configure the 37100C to Internal Test Set (Option Menu key).
	Equipment Required
	Refer to Table 1-1 for further information about the following equip- ment:
	GPIB cable, ANRITSU 2100-2, or equivalent
	Anritsu ML243XA Power Meter with MA2474A Power Sensor
	NOTE
	Allow the 271VVC and never mater to warm up at least

Allow the 371XXC and power meter to warm-up at least 30 minutes prior to performing calibration.

Procedure

Step 1. Connect test equipment as shown in Figure 6-2. If an SM5235 or SM5392 is installed, do NOT connect the power sensor to the test port of the SM.

Figure 6-2. Equipment Set-Up for RF Power/ALC Calibration

- *Step 2.* Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.
- *Step 3.* Select **DIAGNOSTICS** from menu; then select in sequence: **H/W CALIBRATIONS**, and then **SOURCE ALC CALIBRATION** (below).

- *Step 4.* Follow the directions displayed on the screen to set-up and connect the power meter to the 371XXC.
- *Step 5.* Select **START SOURCE ALC CALIBRATION** from menu.

POWER/ALC CALIBRATION

	Step 6.	Follow the directions displayed on the 371XXC LCD, until calibration is completed.	
	Step 7.	Leave the Power Sensor connected to the RF OUT of the 37100C and perform a Port 2 ALC calibration.	
Post Calibration Actions	After the tions, as a	calibration process is completed, perform the following ac- appropriate:	
	If calibration of the second sec	ation passes:	
	Save the calibration data to (hard) disk, as follows:		
	Step 1.	Press the Option Menu key (Enhancement key group) to display the OPTIONS menu.	
	Step 2.	Select DIAGNOSTICS from menu. Then select in se- quence: H/W CALIBRATIONS DISK OPERATIONS SAVE TO HARD DISK HW_CAL.ALC.	
	NOTE Also save the calibration data to floppy disk for archival purposes as a backup in case of a hard disk failure. Label the disk with calibration type (ALC), date, and system model and serial numbers. Set the copy protect tab on the disk. Properly safeguard the disk so that it will be avail- able for later use, as needed.		
	Step 3.	Perform the RF Power test in the 2300-178 program. If the test fails, proceed to Chapter 5, Troubleshooting.	
	<i>If calibration fails:</i> Perform the following:		
	Verify that the power meter and sensor are functioning correctly, the cables are in good condition, and all connections are secure.		
	🛛 Veri	fy the correct power sensor data exists in the power meter.	
	Note mes	e the failed step in the calibration procedure from the screen sages.	
	□ Repo Trou	eat calibration. If it still fails then proceed to Chapter 5, ibleshooting.	

6-6 SOURCE LOCK THRESHOLD CALIBRATION

If an SM5235 or SM5392 is installed with the 37100C, remove the SM test set and configure the 37100C to Internal Test Set (Option Menu key). Perform the Source Lock Threshold (SLT) Calibration. No cables or other connections are required; however, ensure that the Power/ALC Calibration (page 6-8) has been performed prior to attempting this calibration.

NOTE

Also save the calibration data to floppy disk for archival purposes as a backup in case of a hard disk failure. Label the disk with calibration type (SLT), date, and system model and serial numbers. Set the copy protect tab on the disk. Properly safeguard the disk so that it will be available for later use, as needed.

If an SM5235 or SM5392 is to be used with the system, follow further SLT calibration instructions found in Appendix F.

Chapter 7 System Description

Table of Contents

7-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
7-2	SYSTEM OVERVIEW · · · · · · · · · · · · · · · · · · ·
7-3	ANALOG SUBSYSTEM ASSEMBLIES · · · · · · · · · · · · · · 7-7
	Signal Source Module7-7Test Set Module7-8Receiver Module7-9A8, Source Lock/ Signal Separation and Control PCB7-10IF Section7-10A7 PCB, LO37-10A5 A/D Converter PCB7-11
7-4	DIGITAL SUBSYSTEM ASSEMBLIES · · · · · · · · · · · · · · 7-12
	A9 Main Processor PCB Assembly7-12A7 PCB, 10 MHz Time Base7-13A13 I/O Interface #1 PCB Assembly7-15A14 I/O Interface #2 PCB Assembly7-15A15 Graphics Processor PCB Assembly7-16A16 Hard Disk PCB Assembly7-16Floppy Disk Drive Assembly7-16A24 VME Bus Terminator PCB7-16
7-5	MAIN CHASSIS ASSEMBLIES · · · · · · · · · · · · · · · · · · ·
	A17 System Motherboard Assembly7-16Front Panel Assembly7-16Rear Panel Assembly7-17A18 Rear Panel Interface PCB7-17Power Supply Module7-17Internal LCD7-19

Chapter 7 System Description

This chapter provides a brief overview of the functional assemblies and major parts that comprise a typical Series 37100C VNA system. It also briefly describes the operation of each major assembly.

Series 37100C Vector Network Analyzers are configured as Direct-Access Receivers for antenna, frequency conversion, and multiple output device measurements in the 22.5 MHz to 40 GHz frequency range. The 371XXC also maintains the ability to measure all four S-parameters with the addition of a reflectometer setup at the front end of the receiver.

The 371XXC performs these measurements by sourcing a stimulus signal to the Device Under Test (DUT) that is connected to the front panel RF Out connector. (See Figure 7-1 on page 7-5). It simultaneously measures the DUT response. The test signal(s) and a sample of the stimulus signal, are down converted and then transformed into their real and imaginary vector components. The resultant vector components are measured and converted into digital information. This digital information is sent to the Main Processor PCB where the desired data is processed and then presented to the user via the front panel color display. The display information is also sent to the rear panel VGA Out connector for use with an external VGA monitor.

The processed measurement information is also sent to the rear panel Printer Out connector for use with an external printer and/or plotter.

A front panel keypad, a rotary knob, and an IBM compatible keyboard interface provide user interaction with 371XXC Main Processor PCB.

The system is equipped with internal hard disk and floppy disk drives and battery backed internal memories for storage and retrieval of data and front panel setup information.

The 371XXC implements an IEEE 488.2 interface. This GPIB interface allows an externally connected instrument controller to control the 371XXC system in the "Remote-Only" mode. All 371XXC measurement and input/output operations may be controlled remotely in this mode.

An internal service log stores a record of system failures, data about the failures, and other key system service information. The service log is implemented using internal battery-backed SRAM memory.

7-1 INTRODUCTION

7-2 SYSTEM OVERVIEW

ANALOG SUBSYSTEM ASSEMBLIES

(This page intentionally blank)

Figure 7-1. Overall Block Diagram of 371XXC VNA System

372XXB MM

OVERALL BLOCK DIAGRAM OF 371XXC VNA SYSTEM

* MODEL 37169A ONLY

ANALOG SUBSYSTEM BLOCK DIAGRAM

Figure 7-2. Analog Subsystem Block Diagram

SYSTEM DESCRIPTION

372XXB MM

7-3 ANALOG SUBSYSTEM ASSEMBLIES The following paragraphs briefly describe the major assemblies that comprise the 371XXC Analog Subsystem. Descriptions of the functions performed by each assembly are also included.

Signal Source Module The Signal Source Module consists of the items listed below; refer to the block diagram of the Analog Subsystem (Figure 7-2) at left.

- **2**-20 GHz YIG Oscillator Assembly
- □ A21A1 YIG/Bias Controller PCB
- □ A21A2 Source Control PCB
- **Gamma** Switched Filter Assembly
- Down Converter Assembly

The Signal Source Module is a swept frequency signal generator that produces a phase locked (and leveled) output signal within a range of 22.5 MHz to 20 GHz. All Series 371XXC VNA models employ phase-lock control of the signal source module so that the output frequency is accurate and stable. The output signal is phase locked by the –6 MHz/volt control signal fed back from the A8 Source Lock/Separation Control PCB Assembly (which is described in following paragraphs).

All Series 371XXC VNA models use a single YIG-tuned oscillator to produce fundamental frequency source signals from 2.0 to 20 GHz. All other output frequencies are derived from the fundamental frequencies generated by the YIG-tuned oscillator. The signal source output frequencies for the low end portion of the frequency range (22.5 MHz to 2.0 GHz) are produced by down converting YIG fundamental signals in the range of 6.3225 to 8.3 GHz.

For Model 37169C, the signal source output frequencies for the high end portion of the frequency range (20 to 40 GHz) are produced by the Switched Doubler Module that doubles the YIG fundamental signals in the range of 10 to 20 GHz. The Switched Doubler Module (SDM) is located in the Test Set Module (described below.) The A21A2 Source Control PCB assembly provides all bias and control signals for the SDM.

The YIG-tuned oscillator generates a high-power RF output signal that has low broadband noise and low spurious content. The frequency of the YIG-tuned oscillator is controlled by means of :

- **□** The YIG main tuning coil
- □ The YIG FM (fine tuning) coil. The system A9 Main Microprocessor PCB sends the data that represents the desired operating frequency to the A21A2 (Source Control) PCB, which converts the frequency data to analog signals. These signals are then sent to

ANALOG SUBSYSTEM ASSEMBLIES

the A21A1 YIG/Bias Controller PCB. This PCB converts the analog signals to YIG main tuning coil current.

The main tuning coil current from A21A1 YIG/Bias Controller PCB coarsely tunes the YIG-tuned Oscillator to within a few megahertz of the final output frequency. The YIG phase-lock loop then fine tunes the YIG-tuned oscillator to the exact output frequency via the FM (fine tuning) coil.

The fundamental frequency source signal is leveled by a PIN Diode attenuator that is part of the Switched Filter Assembly. This attenuator is controlled by the Automatic Leveling Control (ALC) circuits that are located on the A21A2 Source Control PCB. The input to the ALC circuits is the DC feed-back signal from the leveling detectors located in the Test Set Module.

Depending on the frequency of operation, the fundamental signal is passed through one of four low-pass filters located in the Switched Filter Assembly. The cut-off frequencies for these filters are 3.3 GHz, 5.5 GHz, 8.4 GHz, and 13.5 GHz, respectively. The signal is then passed through a 20 GHz high pass filter before being routed either directly to the Test Set Module, or to the Down-Converter Assembly.

The signal is switched to the Down-Converter Assembly only when the 371XXC is operating in the low end portion of its frequency range. The frequency of the output signal from the Down-Converter Assembly is 22.5 MHz to 2 GHz. The output signal from the Down-Converter Assembly is routed to the Test Set Module.

Test Set Module The Test Set Module consists of the items listed below; refer to Figure 7-2.

- □ Level Detector
- □ Switched Doubler Module for 20-40 GHz operation (Model 37169C)

In the Test Set Module, the 22.5 MHz – 20 GHz signal from the signal source module is output to the DUT via the RF Out front panel connector.

The output circuit path contains a splitter. One path from the splitter goes to the RF OUTPUT connector and the other path feeds the associated level detector. The output generated by the level detector is a DC signal that corresponds to the output level of the stimulus signal. This signal is the input signal for the ALC circuits located in the signal source module.

The Test Set simultaneously receives front panel A1, B1, A2, B2 connectors device-under-test (DUT) signals via the couplers. These test signals are sent to the Receiver Module.

Receiver Module The Receiver Module consists of the items listed below; refer to Figure 7-2.

- □ Quad Sampler/Buffer Amplifier with integrated SRD (step recovery diode)
- D Power Amplifier
- □ A1, LO1 PCB
- □ A2, LO2 PCB

The Receiver Module is a four channel two stage Sampler/Buffer Amplifier and Down Conversion unit. It simultaneously converts the four 22.5 MHz - 40 GHz signals from the Test Set Module into three 2.5 MHz IF signals that are output to the IF Section.

The first stage of the Receiver Module uses harmonic sampling to down-convert the four 22.5 MHz – 40 GHz output signals from the Test Set Module down to 89 MHz signals. Any input signals below 270 MHz are passed directly through the four harmonic samplers to the second stage without down-conversion. The drive signal to each of the harmonic samplers is a comb of harmonics generated by a step recovery diode (SRD).

The Power Amplifier provides the signal that drives the SRD. The input to the Power Amplifier is the 357 – 536.5 MHz signal from the A1 First Local Oscillator (LO1) PCB. Regardless of the operating frequency, the Power Amplifier is biased on at all times to insure optimum thermal stability.

The second stage of the Receiver Module uses the 25.0 – 272.5 MHz signal from the A2 Second Local Oscillator (LO2) PCB to down-convert the 89 MHz signals into four 2.5 MHz IF signals TA, TB, RA, RB (two test signals and two reference signals). Either the Reference A or the Reference B IF signal is selected, as is appropriate for Forward/Reverse operation. The resultant three 2.5 MHz IF signals (Test A, Test B, and Reference A/B) are output to the IF Section. A buffered version of the Reference A/B signal is also fed to the A8 Source Lock/Signal Separation Control PCB as the Source Lock signal.

The Receiver Module can also select the Reference A IF signal that is output to the IF Section via the Test A switch path. This IF signal is used during Line Reflect Line (LRL) Calibrations to ratio the Reference A and Reference B signals.

<i>A8, Source Lock/ Signal Separation and Control PCB</i>	The Source Lock Phase Comparator circuit on the A8 Source Lock/ Signal Separation Control PCB compares the Source Lock (Reference A/B) signal from the Receiver Module with a signal derived from the 10 MHz reference oscillator. The output of this circuit is the –6 MHz/V correction signal, which is routed to the circuit on the A21A2 Source Control PCB that generates the FM coil tuning current signal. This signal is output to the A21A1 YIG/Bias Controller PCB to fine tune the YIG-tuned oscillator to the exact output frequency. When the YIG-tuned oscillator outputs the exact frequency, the two inputs to the phase comparator circuit on the A8 PCB match and the phase-lock loop is locked.	
	The A8 PCB Assembly also provides bias and control signals to the Test Set and Receiver Modules for operating the following circuits:	
	Power Amplifier	
	Quad/Sampler Buffer Amplifier	
	Step Attenuators (External)	
IF Section	The IF Section consists of the items listed below; refer to Figure 7-2.	
	□ A4, Reference IF PCB	
	□ A5, A/D Converter PCB	
	□ A6, Test B IF PCB	
	A7, Third Local Oscillator, LO3, PCB	
	The IF Section converts the three 2.5 MHz IF signals from the Re- ceiver Module into six DC output signals. The A3 (Test A), A4 (Refer- ence A/B), and A6 (Test B) PCBs down-convert the 2.5 MHz input IF signals to 80 kHz IF signals and then adjust their amplitude for input to the synchronous detector stage of each PCB. Each 80 kHz IF signal is synchronously detected and converted into a pair of DC signals that contain the information for the real and imaginary portions of the original 80 kHz IF signal. Thus, the three IF signals (two test signals and the reference signal) yield six DC signals that fully represent the real and imaginary vector components of the DUT's S-parameters.	
	The IF Section also checks the 2.5 MHz phase lock signal for proper power level by comparing it to a known reference level on the A4 PCB. A sample of the 2.5 MHz Reference A/B IF signal is sent to the A8 Source Lock/Separation Control PCB assembly for phase locking the signal source module. The A3 and A6 PCBs are functionally identical and physically interchangeable.	
A7 PCB, LO3	The A7, Third Local Oscillator (LO3) Assembly, provides a fixed 2.42 MHz Local Oscillator signal that is used on the A3, A4, and A6 PCBs to down-convert the 2.5 MHz IF signals to 80 kHz. It also provides an 80 kHz standard signal for the IF Section Calibration process that occurs au-	

tomatically approximately every six minutes. This automatic IF Section Calibration is one of the 371XXA features that ensures rated measurement accuracy. Automatic IF Calibration can be turned off and/or invoked at any time during measurement sweeps.

A5 A/D Converter PCB The A5 A/D Converter PCB contains a six-channel, two stage, switched-filter sample-and-hold circuit and a 20 bit A/D converter. Each of the six DC signals from the A3, A4, and A6 PCBs are input to a separate channel of the PCB. The first stage of each channel is a low-pass filter with four selectable cutoff frequencies of 10 kHz, 1 kHz, 100 Hz, and 10 Hz. The second stage of each channel is a sample-and-hold amplifier that stores the signals during the A/D conversion process. Each channel is sequentially selected for input to the 20 bit A/D converter.

The A5 A/D Converter PCB also derives the 109.89 kHz Power Supply Synchronization Signal and the 80 kHz IF Synchronization Signal from the 10 MHz Reference Timebase. Additional functions of the A5, A/D Converter Assembly include:

- □ Measurement of power supply voltages and other internal nodes of the 371XXC for diagnostic purposes.
- □ Measurement of an externally applied analog input signal. This function is used for service purposes only.
- **D** External Trigger Input signal processing (from rear panel)
- **□** External Analog Output signal generation (to rear panel)

The A/D converter circuitry located on the A/5 PCB is used as a DVM to measure various internal system analog monitor points on the A1 – A8 and A21A1/ A21A2 PCBs. It is also used to monitor power supply voltages and other critical points throughout the 371XXC, which can be readout via the Diagnostics Menus. DVM readings are also recorded in the service log for certain system failures.

NOTE

When the A5 PCB is replaced, all switches on the new PCB must be changed to match the settings found on the previous PCB.

7-4	DIGITAL SUBSYSTEM ASSEMBLIES	The following paragraphs briefly describe the major assemblies that com- prise the 371XXC Digital Subsystem. The digital subsystem provides all system control, I/O interface, digital signal processing, and data pre- sentation functions.		
		The major assemblies that comprise the 371XXC digital PCB subsys- tem are listed below. Refer to Figure 7-3.		
		A9, Main Processor PCB		
		□ A13, I/O Interface #1 PCB		
		□ A14, I/O Interface #2 PCB		
		A15, Graphics Processor PCB		
		A16, Hard Disk PCB		
		A18, Rear Panel Interface		
		Rear Panel Assembly		
		Front Panel Assembly		
		Floppy Disk Assembly		
		A24, VME Bus Terminator PCB		
	A9 Main Processor	The major components that comprise the A9 Main Processor PCB are:		
	PCB Assembly	68040 Microprocessor (w/ integrated co-processor) – This is the CPU for the 371XXC system.		
		4 MB DRAM – This is the main system memory. This memory is volatile (non-battery backed). During normal operation, it stores the 371XXC software that is loaded from disk at power-up.		
		 8 KB BBRAM – This auxiliary memory chip contains a back-up battery that is continuously recharged whenever power is applied. (The back-up battery has a four year minimum life span.) This chip also contains real time and date clock functions. It is used to store low level boot-up parameters, ALC calibration data, source frequency calibration data, and service log header data. 		
		512 KB SRAM – This auxiliary memory is backed-up by a non-rechargeable Lithium battery that provides 200 days (maxi- mum) of power-off protection. It is used to store current and saved front panel setups, trace/normalization data, current RF calibration data, current sweep frequency data, flat power cali- bration data, and the service log error list.		
		VME Bus interface chip – This chip is used to interface the Main Processor PCB to the A13, A14, and A15 digital PCBs (via the VME bus interface).		
		SCSI Bus interface – This chip is used to interface the Main Processor PCB to the A16 Hard Disk PCB.		

System boot-up EPROM - This chip contains the boot-up instructions used by the system CPU at power-up.

A7 PCB, 10 MHzExcept for units equipped with Option 10, the A7 PCB contains the
10 MHz TCXO reference time base that is the master time base for the
system. It also contains the signal distribution and switching func-
tions for all External/Internal 10 MHz reference signals.

The A7 PCB provides the fixed 2.42 MHz Local Oscillator signal and the 80 kHz Calibration signal to the IF PCBS (A3, A4, and A6). These signals are derived from the 10 MHz reference time base.

Units equipped with Option 10 have a high-stability ovenized time base mounted inside the rear panel directly above the Power Supply Module. This time base replaces the standard 10 MHz time base located on the A7 PCB. The output from this time base is routed to the A7 PCB for distribution. It is powered by regulated +24 Vdc from the A7 PC

DIGITAL SUBSYSTEM BLOCK DIAGRAM

Figure 7-3. Digital Subsystem Block Diagram

SYSTEM DESCRIPTION

372XXB MM

A13 I/O Interface #1	This PCB assembly performs the following functions:		
PCB Assembly	Floppy drive control – interface for the Floppy Drive Assembly		
	External Keyboard control – interface for the front panel Keyboard connector		
	Interface for the A18 Rear Panel PCB Assembly (below)		
	Interface and control for the rear panel IEEE 488.2 GPIB and Dedicated GPIB interface connectors		
A14 I/O Interface #2 PCB Assembly	This PCB assembly contains a State Machine controller, decode logic, and bus interface control circuits that perform the following functions:		
	 Quiet Bus interface control. The Quiet Bus passes control and data signals from the A9 Main Processor PCB to the A1 – A8, and A21 PCBs and returns status and data signals back to the A9 PCB. This bus is managed by the control circuits on the A14 PCB such that it is inactive during the time that a measurement is being taken. 		
	NOTE		
	The output data from the A5 PCB A/D converter is sent to the A9 Main Processor PCB via the Quiet Bus, the A14 PCB, and the VME Bus.		
	 A/D Bus interface control. During the measurement process, all A/D selection and conversion functions on the A5 PCB are con- trolled exclusively by the A14 PCB State Machine Controller. This is accomplished via the command lines of the A/D Bus. 		
	Measurement control functions – the A14 PCB State Machine Controller manages many of the 371XXC functions during a measurement, as follows:		
	Quiet Bus interface control		
	A/D Bus interface control:		
	Sample and Hold control for A5 PCB		
	A/D selection and conversion control for A5 PCB		
	Check for phase lock condition		
	Gain ranging		
	Delay generation for IF Bandwidth setting function		
	The A14 PCB also provides the interface to the Front Panel A19 and A20 PCBs		

DIGITAL SUBSYSTEM ASSEMBLIES

	A15 Graphics Processor PCB	This PCB assembly contains circuitry that simultaneously drives both the internal LCD and an external VGA monitor (if used), as follows:		
	Assembly	It receives measurement and display information from the A9 Main Processor PCB and generates screen display (video) infor- mation.		
		Provides interface and control for the internal LCD Assembly.		
		 Provides interface for an external monitor via the rear panel VGA Out connector. 		
	A16 Hard Disk PCB Assembly	The PCB assembly contains a pre-formatted hard disk drive assembly and associated interface circuitry. The A16 PCB interfaces directly with the A9 Main Processor PCB via the (A9) SCSI interface.		
	Floppy Disk Drive Assembly	This unit is a standard 1.44 MByte DOS compatible format floppy disk drive. It is physically mounted to the test set tray (not to the Front Panel Assembly). It interfaces to the system via the A13 I/O Interface #1 PCB.		
	A24 VME Bus Terminator PCB	This PCB assembly terminates the VME bus to insure stable digital data transfer on the bus. It plugs into the VME bus structure on the bottom surface of the A17 Motherboard Assembly.		
7-5 MAIN CHASSIS ASSEMBLIES The abasic A17 System Motherboard A8) a Quie not c		The assemblies described below are the major assemblies mounted to the basic frame of the 371XXC.		
		The motherboard assembly provides signal routing and D.C. power distribution paths for all major PCB assemblies of the Analog Subsystem (A1 – A8) and the Digital Subsystem (A9 – A16). It also contains the VME Bus, Quiet Bus, and A/D Bus structures and other signal routing paths. It does not contain any active components.		
		NOTE		
		The motherboard assembly is an integral part of the 371XXC chassis. It is not a field replaceable unit.		
	Front Panel Assembly	The Front Panel Assembly consists of the following assemblies and parts:		
		A19 Front Panel Switch PCB – this assembly contains all of the front panel switches for the 371XXC VNA.		
		A20 Front Panel Control PCB – this assembly contains the de- code logic for the switches located on the A19 Front Panel Switch PCB. This PCB interfaces with the A14 I/O Interface #2 PCB As- sembly.		
		Front Panel LEDs, beeper, keys, controls, and connectors		
		Front panel overlay		
		Front panel casting		

NOTE

The front panel is an integrated assembly that is replaceable only as a single unit.

Rear Panel Assembly The Rear Panel Assembly includes the following rear panel connectors:

- □ 10 MHz Reference In and Out BNC connectors
- External Trigger BNC connector
- □ External Analog Input BNC connector
- External Analog Output BNC connector

This assembly also includes:

- Bias Tee fuses
- **□** Reference Channel Extension Loops (Option 11)
- □ Main system fan
- □ The A18 Rear Panel PCB and associated connectors, circuitry, and cables (below).

A18 Rear PanelThis PCB assembly contains the rear panel connectors listed below. It
also includes the associated circuitry and cabling interfaces that link
these connectors (and the rear panel fan assembly) to the A17 Mother-
board PCB and other assemblies within the 371XXC.

- □ IEEE 488.2 GPIB connector (with associated interface circuits)
- **Dedicated GPIB connector (with associated interface circuits)**
- □ Printer Out connector (with associated interface circuits)
- UKA Out connector
- CRT degauss and brightness controls
- □ I/O Connector (and associated interface circuits)– This 25 pin miniature D-sub connector contains:
 - Limits Testing Status TTL outputs
 - Ext Dig In signal (same as External Trigger BNC)
 - Ext Ana Out signal (same as External Analog Output BNC)

The A18 PCB also:

- □ Conditions and regulates the -27 Vdc from the power supply to -24 Vdc for the rear panel system fan.
- Routs the External Analog Out and External Trigger Input signals to the Mother Board.

Power Supply Module The Power Supply Module is a single self contained assembly mounted on the rear panel. This module provides:

- □ Unregulated +5, +9, ± 18, and ± 27 Vdc supply voltages to the other assemblies of the 371XXC
- **D** Thermal and over-current shutdown protection circuitry
- □ Sensing and input power regulation for operation with 85 to 264 VAC, 48 to 63 Hz, universal AC line input power
- □ Internal fan cooling (for power supply module)
- □ Supply voltages distribution

Table 7-1 identifies all 371XXC DC power supply voltages and lists their usage by the various PCB assemblies. Unless otherwise indicated, supply voltages are regulated on the assembly using them. The analog and digital power supply grounds are isolated.

NOTE

All power supply voltages listed in Table 7-1 can be accessed via the A/D bus for measurement by the A/D converter circuitry (for example, DVM) located on the A5 A/D PCB assembly.

Voltage	Assemblies Where Used			
+5V	A1, A2, A3, A4, A5, A6, A7, A9, A13, A14, A15, A16, A18, A19/A20 (P.O. Front Panel), A21A1/A2A1 (P.O. Source Module), A24, External Keyboard			
+9V	A1, A2, A7, A8			
+18V	A1, A2, A3, A4, A5, A6, A7, A8, A13			
–18V	A1, A2, A3, A4, A5, A6, A7, A8, A13			
+27V	A1, A2, A5, A7			
–27V	A5, A18			
The following supply voltages are derived from the ± 18 supply voltages on the A13 I/O #1 PCB				
+12V	A9, A15			
-12V	A9, A15			

Table 7-1. 371XXC Power Supply Voltages and Usages

Internal LCD The internal LCD is powered from the A17 Motherboard via a flexible PCB assembly. There are no internal adjustments for this unit.

NOTE

The LCD is not a field repairable unit.

Chapter 8 Remove and Replace Procedures

Table of Contents

8-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
8-2	EQUIPMENT REQUIRED • • • • • • • • • • • • • • • • • 8-3
8-3	REMOVE / REPLACE 371XXC COVERS · · · · · · · · · · · 8-4
8-4	REMOVE / REPLACE THE A1-A9 AND A13-A16 PCBS···· 8-6
	A1 – A9 PCBs · · · · · · · · · · · · · · · · · · ·
8-5	REMOVE / REPLACE A9 PCB BBRAM CHIP · · · · · · · 8-8
8-6	REMOVE / REPLACE A9 PCB SRAM BATTERY · · · · · · 8-10
8-7	REMOVE / REPLACE A24 VME BUS TERMINATOR PCB · · 8-12
8-8	REMOVE / REPLACE FRONT PANEL ASSEMBLY · · · · · 8-13
8-9	LIQUID CRYSTAL DISPLAY (LCD) · · · · · · · · · · · · 8-15
8-10	REMOVE / REPLACE FLOPPY DISK DRIVE · · · · · · · 8-16
8-11	REMOVE / REPLACE REAR PANEL ASSEMBLY · · · · · · 8-18
8-12	REMOVE / REPLACE FAN ASSEMBLY · · · · · · · · · · 8-19
8-13	REMOVE / REPLACE POWER SUPPLY MODULE · · · · · 8-20
8-14	REMOVE / REPLACE A18 REAR PANEL PCB · · · · · · · 8-21
8-15	REMOVE / REPLACE TEST SET MODULE ASSEMBLIES \cdot 8-22
	Buffer Amplifier/ Sampler(A31) • • • • • • • • • • • • • • 8-25 Switched Doubler Module Assembly • • • • • • • • • • • 8-26
8-16	REMOVE / REPLACE SIGNAL SOURCE MODULE ASSEMBLIES · · · · · · · · · · · · · · · · · · ·
	Removal of Signal Source Module8-27A21A2 Source Control PCB8-29A21A1 Source YIG Bias Control PCB8-29Switched Filter Assembly8-30Down Converter Assembly8-31YIG Oscillator Assembly8-31

Chapter 8 Remove and Replace Procedures

8-1 INTRODUCTION

This chapter provides procedures for removing and replacing 371XXC field exchangeable assemblies and components. When using these procedures, please observe the warning and caution notices below.

WARNING

Hazardous voltages are present inside the instrument when ac line power is connected. Turn off the instrument and remove the line cord before removing any covers or panels.

CAUTION

Many assemblies in the 371XXC contain static-sensitive components. Improper handling of these assemblies may result in damage to the assemblies. *Always* observe the static-sensitive component handling precautions described in Chapter 1, Figure 1-2.

8-2 EQUIPMENT REQUIRED All procedures in this chapter require the use of either a #1 or #2 size Phillips type screw driver. Many procedures require the use of a 5/16 inch, 8 inch/pounds, torque wrench, ANRITSU Part Number 01-201. This wrench is found in many ANRITSU Calibration Kits. Any additional tool requirements are specified at the beginning of each procedure.

8-3 REMOVE / REPLACE 371XXC COVERS

Adjustment and troubleshooting operations require removal of the top cover. Replacement of some 371XXC assemblies and parts require removal of all covers. The following procedures describe this process.

NOTE

It is only necessary to loosen the 371XXC handle assemblies to remove the top, bottom, or side covers. However, if the front panel is to be removed, remove the handle assemblies at this time.

Preliminary:

Switch the 371XXC power **off**. Remove the power cord.

Procedure:

- *Step 1.* Loosen (or remove) the right and left handle assemblies, as follows:
 - Place the 371XXC on its top (bottom-side up).
 - Loosen/remove the screws at the sides of the handle assemblies.
 - If removing handles, pull them away from unit and set aside.

CAUTION

The green headed screws have Metric threads.

- *Step 2.* To remove the top cover:
 - Place the 371XXC in normal (top-side up) position.
 - Remove the feet from the two top corners at the rear of the 371XXC (Figure 8-1).
 - **Remove the center screw from rear of the top cover.**
 - Lift and slide the top cover away from the 371XXC.
- *Step 3.* To remove the bottom cover:
 - Place the 371XXC on its top (bottom-side up).
 - Remove the feet from the two bottom corners at the rear of the 371XXC.
 - **Remove the center screw from rear of the bottom cover.**
 - Lift and slide the top cover away from the 371XXC.
- *Step 4.* To remove the left cover:

- Place the 371XXC on its right side (monitor down).
- If not already done, remove the feet from the two left-side corners at the rear of the 371XXC.
- Remove two center screws from the left cover.
- **Remove the center screw from rear of the left side cover.**
- Lift and slide the side cover away from the 371XXC.
- *Step 5.* To remove the right cover:
 - Place the 371XXC its left side (monitor up).
 - If not already done, remove the feet from the two right-side corners at the rear of the 371XXC.
 - Remove the center screw from rear of the right side cover.
 - Remove the center screw from rear of the right side cover.
 - Lift and slide the side cover away from the 371XXC.

Figure 8-1. Exploded View of 371XXC Chassis Covers

REMOVE AND REPLACE PROCEDURES

To replace the instrument covers, perform the steps above in the reverse order.

8-4 REMOVE / REPLACE THE A1-A9 AND A13-A16 PCBS This paragraph provides instructions for removing and replacing the A1-A9 and A13 – A16 PCB's, which are located underneath the covers of the large and small card-cages, respectively.

Preliminary:

Switch the 371XXC power **off**. Remove the power cord.

Remove the top cover (paragraph 8-3).

A1 - A9 PCBs

Procedure:

Step 1.	Place the 371XXC in normal (top-side up) position.
Step 2.	Remove the two screws that secure the large card-cage cover (Figure 8-2).
Step 3.	Remove the large card-cage cover and set aside.
Step 4.	Lift up on the edge tabs of the selected PCB(s) and lift straight up.

NOTE

When the A5 PCB is replaced, all switches on the new PCB must be changed to match the settings found on the previous PCB

To replace the PCB(s) and covers, perform the steps above in the reverse order.

A13 - A16 PCBs

Procedure:

Step 1.	Place the 371XXC in normal (top-side up) position.
Step 2.	Remove the two screws that secure the large card-cage cover (Figure 8-2).
Step 3.	Remove the large card-cage cover, then remove the small card-cage cover and set aside.
Step 4.	Lift up on the edge tabs of the selected PCB(s) and lift straight up.

To replace the PCB(s) and covers, perform the steps above in the reverse order.

Figure 8-2. A1-A9 and A13-A16 PCB Assemblies Removal Diagram

REMOVE AND REPLACE PROCEDURES

8-5 REMOVE / REPLACE A9 PCB BBRAM CHIP		This paragraph provides instructions for removing and replacing the BBRAM Chip located on the A9 Main Processor PCB assembly.	
		Preliminary:	
		Before re save the quency, A	moving and replacing the BBRAM Chip it is necessary to following calibration data to the hard disk: signal source Fre- ALC, SLT, LO1, and LO2. Proceed as follows:
OPTIONS		Step 1.	Press the Option Menu key (Enhancement key group) to display the OPTIONS menu (left).
REGERS REAR PANEL OUTPUT DIAGNOSTICS MULTIPLE SOURCE CONTROL	READ SERVICE LOG INSTALLED OPTIONS PERIPHERAL TESTS TROUBLESHOOTING (FOR SERVICE	Step 2.	Select DIAGNOSTICS from the menu. Then select in se- quence: H/W CALIBRATIONS DISK OPERATIONS SAVE TO HARD DISK HW_CAL.ALL.
PRESS <enter> TO</enter>	ONLY) H/W CALIBRATIONS (FOR SERVICE		<i>NOTE</i> Also save the calibration data to floppy disk. Label the disk with calibration type (ALL), date, and sys-
HARDWARE CALIBRATIONS (FOR SERVICE ONLY)	H/W CALIBRATIONS DISK OPERATIONS SAVE TO HARD DISK		tem model and serial numbers. Set the copy protect tab on the disk. Properly safeguard the disk so that it will be available for later use, as needed.
LO1 CALIBRATION	SAVE TO FLOPPY DISK	Stop 2	Switch the 271VVC newsrach Demonstrate newsrach
LO2 CALIBRATION	FROM HARD DISK	Step 3.	Switch the 371XXC power on . Remove the power cord.
SOURCE FREQUENCY CALIBRATION	FROM FLOPPY DISK	Remove/Replace Procedure:	
SOURCE ALC	DELETE FROM HARD DISK		
DISK OPERATIONS	DELETE	Step 1.	Remove the top cover and the large card-cage cover to ex-
	COPY FROM HARD TO FLOPPY DISK		pose the A1 – A9 PCBs (refer to paragraph 8-3).
		Step 2.	Remove the A9 PCB from the unit.

Figure 8-3. Location of BBRAM Chip on the A9 PCB (54347 PCB only)

A9 PCB/ **BBRAM CHIP**

REMOVE AND REPLACE PROCEDURES

OPTIONS	DIAGNOSTICS	Step 3.	Locate and remove the BBRAM chip from the A9 PCB. See Figure 8-3.
TRIGGERS BEAB PANEI	START SELF TEST	Stop 1	Poplace the BBPAM chip on the AQ PCB
OUTPUT	INSTALLED OPTIONS	Slep 4.	Replace the DDRAW thip on the A9 FCD.
	PERIPHERAL TESTS	Step 5.	Reinstall the A9 PCB, the large card-cage cover, and the
ONTROL PRESS <enter> TO SELECT</enter>	TROUBLESHOOTING (FOR SERVICE ONLY)	1	top cover.
	H/W CALIBRATIONS (FOR SERVICE ONLY)	Step 6.	Reconnect power cord. Switch 371XXC power on .
	PRESS <enter> TO SELECT</enter>	Post Rep	placement Procedure:
HARDWARE	H/W CALIBRATIONS	Recall the floppy dis	e calibration data saved in the Preliminary step from the sk as follows:
CALIBRATIONS (FOR SERVICE ONLY)	SAVE TO HARD DISK	Step 1.	Insert the floppy disk with the previously saved Source Frequency and ALC Calibrations Data in the 371XXC
LO1 CALIBRATION	SAVE TO FLOPPY DISK		floppy disk drive.
LO2 CALIBRATION	RECALL FROM HARD DISK	CL A	
SOURCE FREQUENCY CALIBRATION	RECALL FROM FLOPPY DISK	Step 2.	<i>p z.</i> Select DIAGNOSTICS from the menu (left). Then select sequence: H/W CALIBRATIONS DISK OPERATIONS
SOURCE ALC	DELETE FROM HARD DISK		RECALL CAL FROM FLOPPY DISK HW_CAL.ALL.
DISK OPERATIONS	DELETE FROM FLOPPY DISK		NOTE
PREVIOUS MENU PRESS <enter> TO SELECT</enter>	COPY FROM HARD		NULL If unable to recall calibrations from disk, you must
	COPY FROM FLOPPY		redo the calibration data described in the Prelimi-
	TO HARD DISK		nary step on the preceding page
			har j step on the preceding page.
	SELECT	Step 3.	Install the ND45331 fixture to the front pane, and ensure

- the system sweeps several times without errors.
- Step 4. Refer to Chapter 3, Operational Tests. Perform the following:
 - Clear the errors from the service log.
 - Check the service log for any new errors. (Note that the service log is non-volatile; it may contain error entries from a previous problem or service operation.)
 - Run the Self Test procedure.
 - Refer to Chapter 5, Troubleshooting, if any system errors are reported.

REMOVE AND REPLACE PROCEDURES

8-6 REMOVE / REPLACE A9 PCB SRAM BATTERY

This paragraph provides instructions for removing and replacing the SRAM Battery located on the A9 Main Processor PCB assembly.

Preliminary:

Switch the 371XXC power **off**. Remove the power cord.

CAUTION

The SRAM battery incorporates flammable materials such as lithium and organic solvents. If lithium batteries, such as this one, are mistreated or incorrectly handled, they may *burst open and ignite.* This can result in possible injury or fire. When handling the SRAM battery, carefully following the following precautions:

- DO NOT short circuit.
- DO NOT disassemble, deform, or apply excessive pressure.
- DO NOT heat or incinerate.
- DO NOT apply solder directly.
- DO NOT mix model or new and old batteries.
- DO NOT charge.
- ALWAYS check that proper polarity is observed.

Remove/Replace Procedure:

- **Step 1.** Remove the top cover and the large card-cage cover to expose the A1 A9 PCBs (refer to paragraph 8-3).
- *Step 2.* Remove the A9 PCB from the unit.
- *Step 3.* Locate and carefully remove the SRAM battery from the A9 PCB. See Figure 8-4.

Figure 8-4. Location of SRAM Battery on the A9 PCB (54347 PCB only)

A9 PCB/ SRAM BATTERY

REMOVE AND REPLACE PROCEDURES

SAVE/RECALL FRONT PANEL AND CAL DATA RECALL (OR SAVE) SAVE FRONT PANEL SETUP IN INTERNAL MEMORY PRESS <enter> TO SELECT FUNCTION FRONT PANEL SETUP AND CAL DATA ON HARD DISK</enter>	— Step 4. Step 5.	 Replace the SRAM battery on the A9 PCB, as follows: Insure that the pins are clean. Note the polarity and carefully press the battery into the socket. Reinstall the A9 PCB, the large cara-cage cover, and the top cover.
SAVE FRONT PANEL SETUP TO	Post Rep	placement Procedure:
MEMORY 1 MEMORY 2	Step 1.	Connect power cord. Switch 371XXC power on .
MEMORY 3 MEMORY 4	<i>Step 2.</i>	Ensure the system sweeps several times without errors.
MEMORY 5 MEMORY 6 MEMORY 7	Step 3.	Refer to Chapter 3, Operational Tests. Perform the follow- ing:
MEMORY 8 MEMORY 9 MEMORY 10 PREVIOUS MENU		Check the Service Log for any new errors. (Note that the service log is non-volatile; it may contain error entries from a previous problem or service operation.)
TO SELECT OR		Run the Self Test procedure.
USE KEYPAD		 Refer to Chapter 5, Troubleshooting, if any system errors are reported.
	Step 4.	Use front panel keys to set to Dual Channel Display 1 & 3.
	Step 5.	Save front panel setup to memory as follows:
SAVE/RECALL RECALL FRONT PANEL (OR SAVE)		Press the Save/Recall Menu key
AND CAL DATA SAVE RECALL PRESS <enter> TO SELECT CAL DATA</enter>		 Select SAVE from menu (top left): then in sequence se- lect: FRONT PANEL SETUP IN INTERNAL MEMORY MEMORY 1
FUNCTION FRONT PANEL SETUP AND CAL DATA ON FLOPPY DISK	Step 6.	Reset system to default settings by pressing the Default key.
SAVE FRONT PANEL SETUP TO INTERNAL MEMORY MEMORY 1 MEMORY 2 MEMORY 3	Step 7.	Ensure the system resets to back to the default Quad-Channel display. Refer to Chapter 5, Trouble- shooting, if it does not.
MEMORY 4 MEMORY 5	Step 8.	Recall the saved memory 1 setup as follows:
MEMORY 6		Press the Save/Recall Menu key
MEMORY 7 MEMORY 8 MEMORY 9 MEMORY 10 PREVIOUS MENU		Select RECALL from menu (bottom left): then in se- quence select: FRONT PANEL SETUP IN INTERNAL MEMORY MEMORY 1
PRESS <enter> TO SELECT OR USE KEYPAD</enter>	Step 9.	Ensure that the system recalls the previously saved Dual Channel Display 1 & 3. Refer to Chapter 5, Trouble- shooting, if it does not.

REMOVE AND REPLACE PROCEDURES

8 -7	<i>REMOVE / REPLACE A24 VME BUS TERMINATOR</i>	This paragraph provides instructions for removing and replacing the A24 VME Bus Terminator PCB assembly.	
	PCB		

Preliminary:

- □ Switch 371XXC power **off**. Remove the power cord.
- **Remove bottom cover (paragraph 8-3).**

Remove/Replace Procedure

- *Step 1.* Place the 371XXC on its top (bottom-side up).
- **Step 2.** Locate the A24 PCB assembly (Figure 8-5). Unplug A24 PCB assembly from the A17 Motherboard PCB by gently pulling straight up on each side.

CAUTION

Be careful not bend or disturb the hard co-ax lines located near right edge of A24 PCB.

To replace the A24 PCB assembly, perform the steps above in the reverse order.

Figure 8-5. Location of the A24 VME Bus Terminator PCB Assembly

8-8 REMOVE / REPLACE FRONT PANEL ASSEMBLY

This paragraph provides instructions for removing and replacing the 371XXC Front Panel assembly.

Equipment Required:

□ None.

Preliminary:

□ Switch 371XXC power **off**. Remove the power cord.

□ Remove handle assembles and all covers (paragraph 8-3).

Remove/Replace Procedure:

- *Step 1.* Place the 371XXC in normal (top-side up) position.
- **Step 2.** Remove the four corner screws and the top center screw that secure the front panel assembly to the chassis (see Figure 8-6).
- *Step 3.* Place the 371XXC on its top (bottom-side up).

Figure 8-6. Removal of Front Panel Assembly

Step 4.	Remove the screw that fastens the front panel casting ex- tension lip to the Test Set Module tray. (See diagram at left.)
Step 5.	Disconnect all semi-rigid RF cables that are connected to the front panel. Leave the attenuators attached to the ca- bles to prevent mixing.
Step 6.	Locate the cable from the front panel Power switch to con- nector J20 on the A17 Motherboard PCB. Disconnect at A17, J20 end.
Step 7.	Locate the cable from the front panel Keyboard interface connector to connector J16 on the A17 Motherboard PCB. Disconnect at A17, J16 end.
Step 8.	Gently pull front panel assembly several inches away from chassis. Locate cable from A17 Motherboard PCB to con- nector J1 on A20 Front Panel PCB. Disconnect at A20, J1 end.
Step 9.	Separate the bias input cables (Step 8) from the cable har- nesses, as necessary for removal. Pull front panel assembly free and set aside.

. .

. 1 •

. 1

To replace the front panel assembly, perform the steps above in the reverse order.

NOTE

All RF connections (at the Wxxx cables) should be torqued to 8 in/lbs using the 01-201 wrench from a Calibration Kit. Check for RF discontinuities and other failures using the first six to eight tests in the 2300-178 program.

8-9	LIQUID CRYSTAL
	DISPLAY (LCD)

This paragraph provides instructions for removing and replacing the internal LCD assembly. This LCD display needs no periodic maintenance. Its life is estimated to be 50,000 hours by the manufacturer. Contact Anritsu Company for more information.

Preliminary:

- □ Switch VNA power off. Remove the power cord.
- □ Remove the right handle, top and bottom covers, and right side cover (paragraph 8-3).

Remove/Replace Procedure:

- **Step 1.** Turn the instrument upside-down and remove the W87 cable (20GHz and below units), or the W81 cable (40 GHz units).
- *Step 2.* Return the instrument to the normal operating position and, using steps below, remove the Source Module.
- *Step 3.* Disconnect the two cables from the A21A2 PCB.
- *Step 4.* Loosen the two captivated metal screws that attach the A21A2 bracket to the instrument frame.
- *Step 5.* Disconnect the ribbon cable from the Frequency Converter.
- *Step 6.* Remove the three screws on the right side of the instrument frame from the Source Module frame.
- *Step 7.* Lift the Source Module up, and remove by tipping the top to the right to clear the instrument frame.
- *Step 8.* Disconnect the small connector from the LCD display, by prying very carefully with a flat-blade screwdriver.
- *Step 9.* Unplug the (unlabeled) connector holding the red and white wires from the top of the LCD EMI shield.
- *Step 10.* Remove the four screws from the EMI shield and the LCD to the front panel.
- *Step 11.* Set aside the EMI shield and remove the LCD display.

Install the new display by reversing the above order.

NOTE

All RF connections (at the Wxxx cables) should be torqued to 8 in/lbs using the 01-201 wrench from a Calibration Kit. Check for RF discontinuities and other failures using the first six to eight tests in the 2300-178 program.
- 8-10 REMOVE / REPLACE FLOPPY DISK DRIVE
- This paragraph provides instructions for removing and replacing the Floppy Disk Drive assembly.

NOTE

It is not necessary to remove the front panel assembly to perform this procedure.

Preliminary:

- Switch 371XXC power **off**. Remove the power cord.
- **Remove all covers (paragraph 8-3).**

NOTE

All the cables mentioned in the following procedure have "keyed" connectors.

Remove/Replace Procedure:

- *Step 1.* Place the 371XXC on its top (bottom-side up).
- *Step 2.* At the floppy drive, disconnect the four-conductor Disk Power cable that connects to J1 of the motherboard PCB.
- *Step 3.* At J2 on the motherboard PCB, disconnect the Floppy Control (ribbon) cable that goes to the floppy drive.
- **Step 4.** Remove the three screws that fasten the floppy disk drive mounting plate to the chassis and to the Test Set Module tray (see Figure 8-8).
- *Step 5.* Carefully pull the floppy disk drive assembly to the rear and up to remove assembly.
- *Step 6.* Carefully remove the Floppy Control cable from the rear of the floppy drive. Set aside for re-use.

To replace the Floppy Disk Drive assembly, perform the steps above in the reverse order.

Figure 8-7. Location of Floppy Disk Drive Assembly Mounting Plate Screws

8-11	REMOVE / REPLACE REAR PANEL ASSEMBLY	This para Rear Pan	ngraph provides instructions for removing and replacing the nel Assembly.
		Prelimii	nary:
		🛛 Swit	tch 371XXC power off . Remove the power cord.
		🗆 Rem	nove all covers (paragraph 8-3).
		Remove/Replace Procedure:	
		Step 1.	Place the 371XXC in normal (top-side up) position.
		Step 2.	Remove the three screws on each side of the chassis that fasten to the rear panel assembly. See Figure 8-8.
		Step 3.	Remove the two screws located near top and middle of rear panel (near fan-mounting screws). See Figure 8-8.
		Step 4.	Locate cable from the rear-panel 10 MHz Ref In BNC con- nector to connector J2 of A7 PCB. Disconnect at A7, J2 end.

(Pull up gently to disconnect.)

Figure 8-8. Location of Mounting Screws for Rear Panel Assemblies

Step 5.	Locate cable from the rear-panel 10 MHz Ref Out BNC
-	connector to connector J3 of A7 PCB. Disconnect at A7, J3
	end.

- *Step 6.* Locate cable from the rear-panel Ext Anlg In BNC connector to connector J1 of A5 PCB. Disconnect at A5, J1 end.
- *Step 7.* Place the 371XXC on its right side (monitor down).
- *Step 8.* Locate the cables from the rear-panel Ext Trigger and Ext Anlg Out BNC connectors to connector P13 of the A18 Rear Panel PCB. Disconnect at A18, P13 end. (A18, P3 is the fourth connector away from the rear panel bottom lip.)
- *Step 9.* Disconnect the large ribbon cable from connector P1 of the A18 PCB at motherboard connector J12.
- *Step 10.* Disconnect the two cables from the Power Supply Module at motherboard connectors J4 and J13.
- *Step 11.* If 371XXC is equipped with Option 10A, High Stability Time Base:
 - Locate output cable from the high stability oscillator assembly (mounted above Power supply Module) to connector J1 of A7 PCB. Disconnect at A7, J1 end.
 - Locate power cable from the high stability oscillator assembly to A17 Motherboard connector, J18. Disconnect at A17, J18 end.
- **Step 12.** Place the 371XXC in normal (top-side up) position. Gently pull rear panel assembly away from chassis and lay flat on work surface. Remove cables from cable harnesses, as required.

To replace the Rear Panel Assembly, perform the steps above in the reverse order.

8-12 REMOVE / REPLACE This paragraph provides instructions for removing and replacing the Rear Panel Fan Assembly.

Preliminary:

- □ Switch 371XXC power **off**. Remove the power cord.
- □ Remove all covers (paragraph 8-3).
- **Remove Rear Panel (paragraph 8-10).**

REMOVE AND REPLACE PROCEDURES

FAN ASSEMBLY/ POWER SUPPLY MODULE

Remove/Replace Procedure:

- *Step 1.* Place the Rear Panel Assembly on the work surface with the A18 Rear Panel PCB up.
- *Step 2.* Disconnect the two conductor fan power cable at connector P6 of the A18 PCB.
- **Step 3.** Turn Rear Panel Assembly over, and remove the four screws that fasten the fan guard and fan assembly to the rear panel. See Figure 8-9.
- *Step 4.* Remove the fan guard and separate the fan from the rear panel.

To replace the Rear Panel Fan Assembly, perform the steps above in the reverse order.

8-13 REMOVE / REPLACE POWER SUPPLY Discussion of the Power Supply Module. This paragraph provides instructions for removing and replacing the Power Supply Module.

Preliminary:

Switch 371XXC power off. Remove the power cord.

□ Remove all covers (paragraph 8-3).

Remove Rear Panel (paragraph 8-10).

Remove/Replace Procedure:

- *Step 1.* Place the Rear Panel Assembly on the work surface with the Power Supply Module down.
- **Step 2.** Remove the six screws from the rear panel that fasten it to the left and right edges of the Power Supply Module (see Figure 8-9). Gently separate the two units.

To replace the Power Supply Module, perform the steps above in the reverse order.

A18 REAR PANEL PCB ASSEMBLY

8-14 REMOVE / REPLACE A18 REAR PANEL PCB

This paragraph provides instructions for removing and replacing the A18 Rear Panel PCB assembly.

Equipment Required:

□ Nut Driver, [%]₃₂ in.

 \Box Nut Driver, $\frac{3}{16}$ in.

Preliminary:

Switch 371XXC power **off**. Remove the power cord.

□ Remove all covers (paragraph 8-3).

Remove Rear Panel (paragraph 8-10).

Remove/Replace Procedure:

- *Step 1.* Place the Rear Panel Assembly on the work surface with the A18 Rear Panel PCB up.
- *Step 2.* Disconnect the two-conductor fan power cable at connector P6 of the A18 PCB.
- *Step 3.* Disconnect the wiring for the rear panel Bias Fuses at connector P4 of the A18 PCB.
- *Step 4.* Turn Rear Panel Assembly over. Remove screw located at lower left corner of the rear panel that fastens the A18 PCB to the Rear Panel Assembly (see Figure 8-9).
- **Step 5.** Using a $\frac{1}{32}$ in. nut driver, remove the standoffs that fasten the IEEE 488.2 GPIB and Dedicated GPIB connectors to the rear panel.
- **Step 6.** Using a $\frac{3}{16}$ in. nut driver, remove the standoffs that fasten the Printer Out, VGA Out, and External/IO connectors to the rear panel. Set standoffs aside for re-use.
- *Step 7.* Carefully separate the A18 PCB from the rear panel.

To replace the A18 Rear Panel PCB assembly, perform the steps above in the reverse order.

8-15 REMOVE / REPLACE TEST SET MODULE ASSEMBLIES

The following paragraphs provide instructions for removing and replacing the RF/microwave components that comprise the Test Set Module .

Equipment Required:

□ Connector torque wrench ($\frac{5}{16}$ in), ANRITSU Model 01-201, or equivalent.

CAUTION

Throughout these procedures, *always* use a $\frac{5}{16}$ inch connector tor torque wrench set for eight inch pounds for connecting the Test Set Module semi-rigid coaxial lines and RF/microwave components. Use of improper tools may damage the connectors, resulting in degraded instrument performance.

Preliminary:

□ Switch 371XXC power off. Remove the power cord

□ Remove all covers (paragraph 8-3)

REMOVE AND REPLACE PROCEDURES

TEST SET MODULES

Figure 8-9. 371XX Module Components Layout Diagram

TEST SET MODULES

Note

This diagram shows cabling for the 37147C; cabling for the 37169C is similar, except that is contains a Doubler and corresponding cables.

Figure 8-10. 37147C Module Cabling Diagram

REMOVE AND REPLACE PROCEDURES

371XXC MM

Buffer Amplifier/	Use the following procedure to remove/replace the Buffer Amplifier/
Sampler(A31)	Sampler assemblies of all models.

Preliminary:

□ Remove the Power Amplifier assembly from the Buffer Amp. Do not remove the Sampler (Figure 8-11) from the Buffer Amp..

Procedure:

- *Step 1.* Disconnect the semi-rigid coaxial lines and pads attached to the Buffer Amplifier/Sampler assembly; see Figure 8-11.
- **Step 2.** Disconnect the cables from connectors J1 through J7 of the A31 Buffer Amplifier/Sampler assembly. (Pull up gently to disconnect.) Note that the connector end of each cable is marked with the associated A31 connector number.
- *Step 3.* Disconnect the two cable connectors from the TEST A connector body on the Buffer Amplifier/Sampler assembly (see Figure 8-11). Similarly, disconnect the two cable connectors from the REF A connector body.

NOTE The matching pin numbers are identified on the cable connectors and on the connector body.)

Figure 8-11. A31 Buffer Amplifier/Sampler Assembly, Details

REMOVE AND REPLACE PROCEDURES

	Step 4.	Repeat Step 3 for the TEST B and REF B cable connectors.	
	Step 5.	Remove the nine screws that fasten the Buffer Amplifier/Sampler assembly to the test set tray, and lift the assembly from the Test Set Module.	
	To replace the Buffer Amplifier/Sampler assembly, perform the steps above in the reverse order.		
Switched Doubler Module Assembly	Use the following procedure to remove/replace the Switched Doubler Module (SDM) assembly for Model 37169C.		
	Procedure:		
	Step 1.	<i>Step 1.</i> Disconnect the SDM power cable from connector J17 of the A17 Motherboard PCB. Free cable from cable clip, as necessary.	
	Step 2.	Disconnect the semi-rigid coaxial line W81 from the input connector of the SDM; see Figure 8-11.	
	Step 3.	Remove the two screws that fasten the SDM to the Test Set Module tray.	
	Step 4.	Disconnect the semi-rigid coaxial line W80 from the output connector of the SDM; see Figure 8-11. Carefully lift the as- sembly from the Test Set Module.	
	To replace the Switched Doubler Module assembly, perform the steps above in the reverse order.		

8-16 REMOVE / REPLACE SIGNAL SOURCE MODULE ASSEMBLIES

The following paragraphs provide instructions for removing and replacing the RF/microwave components that comprise the Signal Source Module.

Equipment Required:

□ Connector torque wrench (⁵/₁₆ in), ANRITSU Model 01-201, or equivalent.

CAUTION

Throughout these procedures, *always* use a $\frac{5}{6}$ inch connector torque wrench set for eight inch pounds for connecting the Signal Source Module semi-rigid coaxial lines and rf/microwave components. Use of improper tools may damage the connectors, resulting in degraded instrument performance.

Preliminary:

Switch 371XXC power **off**. Remove the power cord.

Remove all covers (paragraph 8-3).

Removal of Signal
Source ModuleUse the following procedure to remove the Signal Source Module from
the chassis. This step is necessary before any of the module compo-
nents can be removed/replaced. See Figures 8-12 and 8-13 for
parts identification.

Procedure:

Step 1. Place the 371XXC on its top (bottom-side up).

Step 2. At J2 on the motherboard PCB, disconnect the Floppy Control (ribbon) cable that goes to the floppy drive. Dress the ribbon cable away from the Signal Source Module output connector; see Figure 8-10.

- *Step 3.* Disconnect the semi-rigid coaxial line W87* from the output connector of the Signal Source Module.
- *Step 4.* Place the 371XXC in normal (top-side up) position.
- **Step 5.** Disconnect the cables from connectors J1, J2, and J3* of the A21A2 Source Control PCB. (Pull up gently to disconnect.) Note that the connector end of each cable is marked with the associated A21A2 connector number.
- *Step 6.* Unplug the bias ribbon cable from the down converter.

^{*} W81 for Model 37169C

REMOVE AND REPLACE PROCEDURES

- *Step 7.* Remove the three screws that fasten the Signal Source Module to the chassis side rail.
- **Step 8.** Loosen the two captive screws that fasten the Signal Source Module to the chassis.
- **Step 9.** Pull up at the rear of the Signal Source Module to disconnect the A21A1 Source YIG Bias Control PCB from the A17 Motherboard PCB. Lift the module from the chassis and tip the top to the right to lift free from the instrument.

To replace the Signal Source Module, perform the steps above in the reverse order.

Figure 8-12. Signal Source Module Removal Details

A21A2 Source ControlUse the following procedure to remove/replace the A21A2 Source Con-
trol PCB assembly. See Figure 8-13 for parts identification.

Procedure:

Step 1. Unfasten the two PCB retainers at the top corners of the A21A2 Source Control PCB. To unfasten, turn screwdriver slot $\frac{1}{4}$ turn *counter-clockwise*.

Figure 8-13. Signal Source Module Assemblies Removal Details

Step 2. Pull the top of the A21A2 PCB away from the source module chassis back plate to clear PCB retainers. Gently pull up to disconnect the A21A2 PCB from the socket on the A21A1 Source YIG Bias Control PC. Remove from Source Module.

To replace the A21A2 Source Control PCB assembly, perform the steps above in the reverse order.

A21A1 Source YIGUse the following procedure to remove/replace the A21A1 Source YIGBias Control PCBBias Control PCB assembly.

Procedure:

	Step 1.	Disconnect the Switched Filter assembly power cable from connector J1 of the A21A1 Source YIG Bias Control PCB. (Pull up gently on ribbon cable to disconnect.)
	Step 2.	Similarly, disconnect the Down Converter assembly power cable from connector J4 of the A21A1 PCB.
	Step 3.	Disconnect the YIG Oscillator assembly power cable from connector J3 of the A21A1 PCB. Pull up on the flexible cir- cuit connector "handle" to disconnect.
	Step 4.	Remove the screw that fastens the front apron of the source module chassis to the heatsink of the A21A1 PCB. See Figure 8-15.
	Step 5.	Remove the four screws that fastens the back plate of the source module chassis to the heatsink of the A21A1 PCB.
	Step 6.	Place the Signal Source Module on its' back plate.
	Step 7.	Unfasten the six PCB retainers on the bottom of the A21A1 PCB. (To unfasten, turn screwdriver slot $\frac{1}{4}$ turn <i>counter-clockwise.</i>) Gently separate the A21A1 PCB (including the heat sink) from the Signal Source Module.
	To replace the steps	e the A21A1 Source YIG Bias Control PCB assembly, perform above in the reverse order.
Switched Filter Assembly	Use the fo sembly.	llowing procedure to remove/replace the Switched Filter as-
	Procedui	re:
	Step 1.	Disconnect the power cable from connector P1 at the rear of the Switched Filter assembly. (Use a small screw driver to pry up gently at each end of the connector, as necessary.)
	Step 2.	Disconnect the semi-rigid coaxial lines from connector J6 (top) and connector J3 (lower-front) of the Switched Filter assembly.
	Step 3.	Disconnect the semi-rigid coaxial line from the RF INPUT (top) connector of the <i>Down Converter</i> assembly.
	Step 4.	Remove the two screws that fasten the Switched Filter as- sembly to the source module chassis and lift the assembly from the Signal Source Module.
	Step 5.	Disconnect the semi-rigid coaxial line from connector J1 (bottom) of the Switched Filter assembly. Put this coaxial line aside for re-use.

NOTE

When replacing the Switched Filter assembly, connect the semi-rigid coaxial line to the bottom connector (J1), before attaching the assembly to the Signal Source Module.

To replace the Switched Filter assembly, perform the steps above in the reverse order.

Down Converter
AssemblyUse the following procedure to remove/replace the Down Converter
assembly.

Procedure:

- *Step 1.* Disconnect the power cable from connector P1 at the front of the Down Converter assembly.
- *Step 2.* Disconnect the semi-rigid coaxial lines from the RF INPUT connector and RF OUTPUT connector of the Down Converter assembly.
- **Step 3.** Remove the two screws that fasten the Down Converter assembly to the source module chassis and lift the assembly from the Signal Source Module.

To replace the Down Converter assembly, perform the steps above in the reverse order.

YIG OscillatorUse the following procedure to remove/replace the YIG Oscillator as-
semblyAssemblysembly.

Procedure:

- *Step 1.* Disconnect the YIG Oscillator assembly power cable from connector J3 of the A21A1 PCB. Pull up on the flexible circuit connector "handle" to disconnect.
- *Step 2.* Disconnect the semi-rigid coaxial line from the connector J6 (top) of the *Switched Filter* assembly.
- *Step 3.* Remove the four screws that fasten the YIG Oscillator assembly to the source module chassis and lift the assembly from the Signal Source Module.

Step 4. Disconnect the semi-rigid coaxial line from the output connector of the YIG Oscillator assembly. Put this coaxial line aside for re-use.

NOTE

When replacing the YIG Oscillator assembly, connect the semi-rigid coaxial line removed in Step 4 to the output connector of the YIG Oscillator before attaching it to the Signal Source Module.

To replace the YIG Oscillator assembly, perform the steps above in the reverse order.

Appendix A Diagnostics Menus

Table of Contents

A-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
A-2	DIAGNOSTICS MENUS · · · · · · · · · · · · · · · · · · ·
	Start Self Test · · · · · · · · · · · · · · · · · · ·
	Read Service Log · · · · · · · · · · · · · · · · · · ·
	Installed Options · · · · · · · · · · · · · · · · · · ·
	Peripheral Tests · · · · · · · · · · · · · · · · · ·
	Troubleshooting
	H/W Calibrations · · · · · · · · · · · · · · · · · · ·

Appendix A Diagnostics Menus

A-1	INTRODUCTION	This appendix contains descriptions and usage information for the 371XXC Diagnostic Menus that are available via the front panel Option Menu key.
A-2	DIAGNOSTICS MENUS	The internal diagnostic capabilities of the 371XXC are accessed via the Options Menu key, which is part of the front panel Enhancement key group. The selections available from the top level DIAGNOSTICS menu (DG1) are listed below. See Figure A-1.
		Start Self Test
		Read Service Log
		Installed Options
		Peripheral Tests
		Troubleshooting
		H/W Calibrations
	Start Self Test	The START SELF TEST selection, when invoked, will automatically test circuits throughout the 371XXC. Once invoked, it requires no external devices or interaction by the user. The net pass/fail result of the self-test is written to the LCD. Any self test failures will cause detailed failure information to be written into the service log.
		This menu is available to service and non-service personnel.
	Read Service Log	The READ SERVICE LOG menu allows for viewing, printing, clear- ing, and saving the internal system service log to floppy disk. The CLEAR LOG function is not recommended for non-service personnel.
		The Service Log is made up of two parts, the log header and the error listing. The log header contains key system parameters such as initial system turn-on date/time/temperature, current power-on date/time/ temperature, total operational hours, system model, serial, and in- stalled option numbers, date/time/temperature stamp of current ser- vice log viewing session, date/time/temperature of internal hardware calibrations, and statistics about various internal system phase lock- ing activities.
		The error listing is a time ordered log containing the system faults with details about the system condition at the time of the fault.

NOTE

	NOTE The service log must always be printed out or saved to disk and sent to the factory along with a failed assembly. Due to the importance of the information provided by the service log to ANRITSU factory Service Engineers, the ex- change prices are only valid if the service log data (disk or printout) is submitted to the factory with the failed assem- bly.
	This menu is available to service and non-service personnel. However, the service log should be cleared by service personnel only.
Installed Options	The INSTALLED OPTIONS menu lists installed option numbers and descriptions.
	This menu is available to service and non-service personnel.
Peripheral Tests	The PERIPHERAL TESTS menu (DG3) tests the printer and GPIB ports, internal LCD, front panel operation, and the external IBM compatible keyboard (if keyboard is connected). These tests will require some interaction and external devices such as the Printer Test Connector (ANRITSU PN: B39553), a GPIB cable, and an external IBM compatible keyboard as appropriate for the specific test.
	This menu is available to service and non-service personnel.
Troubleshooting	The TROUBLESHOOTING menu (DG4) and its sub-menus provide a host of pre-defined internal system modes and sub-system monitors that provide information useful in evaluating proper system operation. Most of these modes do not require any interaction or external test fix- tures. (An exception is the FIRST IF BANDPASS selection which re- quires a thru line to be connected between the test ports.)
	Menu DG4A and its sub-menus provide low level access to internal system hardware. These menus allow the user to control system latches, switches, and DACs. They also allow selection of key system states such as set-on or search for lock . Many internal analog volt- ages may be monitored via the 371XXC built-in DVM monitor net- work.
	CAUTION
	Always exit the troubleshooting mode via the DG4 menu selection FINISHED, RECOVER FROM TROUBLE - SHOOTING to insure proper system state recovery from
	your troubleshooting activities.

H/W Calibrations Refer to Chapter 6 for information on recalibration of the instrument.

Figure A-1. Option Menu Key Menus

371XXC MM

DIAGNOSTICS MENUS

A-5/A-6

Appendix B Error Messages

Table of Contents

B-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
B-2	OPERATIONAL ERROR MESSAGES · · · · · · · · · · · · · · · · · · B-3
B-3	DISK RELATED ERROR MESSAGES $\cdots \cdots \cdots \cdots B$ -3
B-4	GPIB RELATED ERROR MESSAGES · · · · · · · · · · · · · · · · · B-3
B-5	SERVICE LOG ERROR MESSAGES · · · · · · · · · · · · · · · B-3
	0000 - 0099 · · · · · · · · · · · · · · · · ·
	0100 - 3999 · · · · · · · · · · · · · · · · ·
	4000 - 4999 · · · · · · · · · · · · · · · · ·
	5000 - 5999 · · · · · · · · · · · · · · · · ·
	6000 - 6999 · · · · · · · · · · · · · · · · ·
	7000 - 7999 · · · · · · · · · · · · · · · · ·
	8000 - 8999 · · · · · · · · · · · · · · · · ·

Appendix B Error Messages

B-1	INTRODUCTION	This appendix provides a listing of error messages that appear on the 371XXC display or that are written to the internal software Service Log.
B-2	OPERATIONAL ERROR MESSAGES	Table B-1 provides a listing and description of the operational error messages. For the most part, these errors are displayed only on the 371XXC display and are caused by incorrectly operating the 371XXC.
B-3	DISK RELATED ERROR MESSAGES	Table B-2 provides a listing and description of the disk-related-error messages. The numbered errors in this group are also written to the Service Log, since they may indicate system problems.
B-4	GPIB RELATED ERROR MESSAGES	Table B-3 provides a listing and description of GPIB-related error messages. These errors are entered in the Service Log and output as part of the response of OGE/OGL commands.
B -5	SERVICE LOG ERROR MESSAGES	Table B-4 provides a listing of the error messages that are written to the internal system service log. Some of these messages may occur as a result of incorrectly programming the 371XXC. This includes the GPIB errors, 7204–7207, and errors in the 5000 range, RF Power. The RF Power errors may be triggered when setting the 371XXC power to a value greater than its reset level. This feature of the 371XXC lets you take advantage of all available power; however, accuracy cannot be guaranteed when power is unleveled. Refer to Chapter 5, para- graph 5-6 for additional guidance in interpreting these error codes.
		The error messages in Table B-4 are numbered and organized as follows:
	<i>0000 - 0099</i>	These messages generally indicate status or a pass/fail result of a Pe- ripheral or Self test.
	0100 - 3999	These messages primarily indicate a self-test failure with the suspect assembly number being the two high-order digits. For example, error 0111 indicates test 11 for the A1 assembly has failed, similarly, error 0814 is related to the A8 assembly test #14, and error 2138 is related to the A21 assembly test #38.
		Since these errors are primarily self-test errors, they do not get dis- played but only get written to the service log. Any exceptions to this

rule will be an assembly error code between xx00 - xx09, where xx is the assembly that is suspected of failing during normal operation. For example, error 0500 is a run-time error related to the A5 A/D assembly.

- 4000 4999 These messages indicate internal H/W calibration problems.
- *5000 5999* These messages indicate run-time RF power problems.
- *6000 6999* These messages indicate run-time phase lock problems. A letter or sequence of letters following the error message depict the suspect assembly(ies) as follows:
 - \Box A = 10 MHz Reference
 - \square B = LO1 unlocked
 - \Box C = LO2 unlocked
 - $\Box \quad D = Source unlocked$
 - \Box E = IF lock signal level too low
 - \Box F = External synthesizer unlocked
 - \Box G = LO3 unlocked
 - □ None = Unknown
- 7000 7999 These messages indicate a run-time digital section problem.
- 8000 8999 These messages indicate a run-time processing system problem.

Table B-1. Operational Error Messages (1 of 2)

Error Message	Description	Corrective Action	
ATTENUATOR UNAVAILABLE	Option 6 Port 2 Test Step Attenuator is not installed.	Install Option 6 Step Attenuator,	
DIFFERENT H/W SETUP. RECALL ABORTED	Model and/or options is (are) different from the recalled setup.	Reconfigure system to duplicate the hardware setup that was used to store the saved data.	
DIFFERENT S/W VERSION, RECALL ABORTED	Saved state not compatible with soft- ware version or options.	Load compatible software (S/W) version and retry.	
FREQUENCIES HAVE REACHED UP- PER LIMIT	Frequencies being defined in Multiple Source mode have reached upper limits of Sources.	Redefine frequencies to not exceed lim- its of Sources.	
MEMORY LOCATION CORRUPTED	Requested memory location is cor- rupted.	None. If problem reoccurs after storing a new setup, contact ANRITSU Cus- tomer Service.	
NO BANDS ARE STORED	No frequency bands have been defined and stored.	Define and store frequency bands to turn on Multiple Source mode.	
NO STORED MEMORY DATA	No data is stored in memory for display or trace math.	Store or re-save measurement data.	
OPTION NOT INSTALLED	Selected an option that is not installed.	None.	
OUT OF CAL RANGE	Entered values out of the selected cali- bration range.	Change calibration range or re-enter values that are within the current range.	
OUT OF H/W RANGE	Entered value is out of the instrument's hardware range.	Re-enter values that are within range.	
OUT OF RANGE	Entered value is out of range.	Re-enter values that are within range.	
RECEIVER OUT OF RANGE BY EQUATION	Equation defined in Multiple Source mode places receiver frequency out of range when attempting to store band.	Redefine frequency.	
SOURCE 1 OUT OF RANGE BY EQUATION	Equation defined in Multiple Source mode places Source 1 frequency out of range when attempting to store band.	Redefine frequency.	
SOURCE 2 OUT OF RANGE BY EQUATION	Equation defined in Multiple Source mode places Source 2 frequency out of range when attempting to store band.	Redefine frequency.	
STANDARD CAL NOT VALID FOR WAVEGUIDE	Cannot use the standard method when calibrating with waveguide.	Use the Offset Short method with waveguide.	
START F FOLLOWS PREVIOUS STOP F	Start frequency of current band immedi- ately follows stop frequency of previous band. Cannot be modified.	None.	
START MUST BE LESS THAN STOP	Entered start frequency is greater than the stop frequency.	Re-enter frequency values such that the start frequency is lower than the stop frequency.	
STEP IS TOO LARGE	Entered harmonic frequency extends the stop out of range.	Re-enter so that harmonic frequency is within range.	

Table B-1.	Operational	Error Messages	(2 of 2)
	operational	Lifer micessages	(~ 01 ~)

Error Message	Description	Corrective Action
STOP IS OVER RANGE	Entered value exceeds the instrument's stop frequency.	Re-enter stop frequency.
SYSTEM NOT CALIBRATED	371XXC is uncalibrated for the selected measurement values.	Perform a measurement calibration.
TOO FEW POINTS, 2 MINIMUM	Entered too few discrete fill points, 2 is minimum.	Re-enter data points.
TOO MANY POINTS, 1601 MAXIMUM	Entered too many discrete fill points, 1601 points are the maximum allowed.	Re-enter data points.
UNDEFINED DIVIDE BY ZERO	Denominator cannot be zero in equa- tion.	Make denominator a value other than zero.
WINDOW TOO SMALL	Attempted to set time domain range smaller than allowed	Re-enter larger time range.
OUT OF WINDOW RANGE	Attempted to set time domain range larger than allowed	Re-enter values within allowed range.

Table B-2. Disk-Related-Error Messages (1 of 1)

Error Message	Description	Corrective Action
7140 GENERAL FLOPPY DRIVE FAIL	Invalid disk media or format.	Use 1.44 MB diskette and/or format in the 371XXC.
7142 FLOPPY DISK READ ERROR	Read error when accessing disk file.	Use 1.44 MB diskette and/or format in the 371XXC.
7143: FLOPPY DISK WRITE ERROR	Error in writing to disk file.	Use 1.44 MB diskette and/or format in the 371XXC.
7147 FLOPPY DISK UNAVAILABLE	Floppy disk is not available.	Install floppy diskette and/or check floppy disk drive.
7170: GENERAL HARD DISK FAIL	General error in accessing hard disk.	Retry and if still fails, reformat the hard disk drive and/or check floppy disk drive.
7172: HARD DISK READ ERROR	Read error when accessing disk file.	Retry and if still fails, reformat the hard disk drive and/or check floppy disk drive.
7173: HARD DISK WRITE ERROR	Error in writing to disk file.	Retry and if still fails, reformat the hard disk drive and/or check floppy disk drive.
7177: HARD DISK UNAVAILABLE	Hard disk is not available.	Install hard disk drive and/or check op- eration of hard disk.
8140: GENERAL DISK BUFFER ER- ROR	Out of RAM.	Press the System State, Default Pro- gram key, and retry. This will reset the 371XXC to the factory default state.
FILE NOT FOUND	Disk file not found.	None.
FLOPPY DISK HAS NO ROOM FOR FILE	Floppy diskette is full.	Delete files or install new diskette.
FLOPPY DISK NOT READY	Floppy disk is not ready (or not in- stalled.).	Install diskette in floppy drive.
FLOPPY DISK WRITE PROTECTED	Write protect tab in place on floppy diskette.	Remove write-protect tab.
HARD DISK HAS NO ROOM FOR FILE, DELETE EXISTING FILES(S) TO CREATE SPACE	Hard disk is full.	Delete unneeded files.

Table B-3. GPIB-Related Error Messages (1 of 7)

Error Message	Description		
These errors are entered in the Service Log and output as part of the response of OGE/OGL commands for GPIB commands. The list is subdivided into the type of GPIB error: 7204, 7205, 7206, and 7207.			
	7204 GPIB COMMAND ERROR DESCRIPTIONS		
Faulty program mnemonic syntax	Generated when the program mnemonic found was not one of the currently defined program mnemonics for the 371XXC.		
Faulty suffix mnemonic syntax	Generated when the suffix mnemonic found was not one of the currently defined suffix mnemonics for the 371XXC.		
Faulty mnemonic syntax	Generated when the mnemonic found was not one of the currently defined program or suffix mnemonics for the 371XXC.		
Missing Program Message Sepa- rator	Generated when the required semicolon preceding the next program mnemonic was not found.		
Expected NRf data	Generated when a mnemonic is used that requires a trailing NRf numeric data ele- ment. The data element was either missing or the first character of the data element was not one of the acceptable NRf characters.		
NRf mantissa too long	The maximum allowable number of characters in the NRf numeric element mantissa is 255.		
Exponent magnitude too large	The maximum allowable exponent magnitude in an NRf element is +/ 32000.		
Faulty NRf syntax	Can be any number of syntactical errors such as more than one decimal point, inclu- sion of a decimal point in the exponent field, an invalid character imbedded in the nu- meric or no exponent value following the 'E'.		
Expected String Program Data	Generated when a mnemonic is used that requires a trailing string data element. The date element was either missing or no open quote character was found.		
Missing close quote character	Generated when a mnemonic is used that requires a trailing string data element. The open quote character was found, but the close quote character was not.		
Expected Arbitrary Block data	Generated when a mnemonic is used that requires a trailing arbitrary block data ele- ment and the trailing element was not an arbitrary block data element. Or in some cases, the arbitrary block was empty.		
Faulty Arbitrary Block	Generated when a defined length arbitrary block data element is terminated early with an EOI or an indefinite length arbitrary block data element is not properly terminated.		
Missing Program Data Separator	Two data elements of a program mnemonic that requires multiple program data ele- ments, are not properly separated from each other by a comma.		
GET received during PM reception	Generated when the GPIB Command 'Group Execute Trigger' is received during the reception of a program message but before its proper termination with the end message. The partial program message up to but not including the 'Group Execute Trigger' will be executed. Execution of the Group Execute Trigger and any subsequent program message elements received before the end message will be skipped.		

Table B-3.	GPIB-Related Er	rror Messages (2 of 7)
------------	-----------------	------------------------

Error Message	Description	
	7205 GPIB EXECUTION ERROR DESCRIPTIONS	
Not permitted in a DDT command sequence	When executing a defined device trigger command sequence, a forbidden command was detected.	
Too much Arbitrary Block data	The arbitrary block supplied contained more data than was necessary for the currently defined 371XXC state. This can occur when graph types, start/stop frequencies or data points are changed.	
Insufficient Arbitrary Block data	The arbitrary block supplied did not have enough data for the currently defined 371XXC state. This can occur when graph types, start/stop frequencies or data points are changed.	
Invalid parameter for current graph type	An attempt was made to program a non-existent parameter for the current graph type. For instance, a Smith chart does not have a reference or reference line position (mnemonics OFF and REF).	
Parameter out of range	An attempt was made to program an out of integer range value for a parameter. This error is detected by the GPIB MANAGER when converting and rounding to the appropriate integral size (signed/unsigned char/short or long).	
Parameter value not permitted	A parameter value was not found in the list of permissible values for that parameter.	
CW marker sweep not permitted in time domain	The mnemonics M1C, M2C, M3C, M4C, M5C and M6C are forbidden in time domain.	
Parameter unavailable in fre- quency domain	The mnemonic ODV and OTV are forbidden in frequency domain.	
Port 2 Test Attenuator (OPT 6) not installed	The mnemonic TA2 is forbidden when the attenuator is not installed.	
Time Domain (OPT 2) not installed	An attempt was made to use one of the time domain mnemonics when the option is not installed.	
Return to Local not permitted in Local Lockout	The mnemonic RTL failed due to being in the Local Lockout mode.	
Calibration does not exist	An attempt was made to turn on flat power correction or vector error correction when the corresponding calibration does not exist.	
Cal term not available	An attempt was made to get a calibration term which does not exist for the current calibration type.	
Invalid cal term for calibration type	An attempt was made to program a calibration term which does not exist for the cur- rent calibration type.	
Front panel setup not valid	An attempt was made to get a front panel setup that did not contain a correct/valid state.	
Normalization data not valid	An attempt was made to reference normalization data when there was no normaliza- tion data currently stored.	
Command sequence too long	An attempt was made to define a device trigger command sequence which had more than 255 characters.	
Unable to display menu	An attempt was made to display a menu which could not be displayed for the current 371XXC state.	

Table B-3. GPIB-Related Error Messages (3 of 7)

Error Message	Description
String too long	An attempt was made to enter a string for the following mnemonics which exceeded the specified maximum length.
	LTD, LID, LMS and LNM - maximum length is 15 characters.
	LOC - maximum length is 79 characters.
Must specify a calibration type first	In order to perform a calibration, the calibration type must be specified by the use of one of the Cxx mnemonics (i.e. C12, C8T, etc.) PRIOR to the issuance of the mnemonics CWC, TDC or BEG.
Parameter value unchanged	An attempt was made to change a start/stop frequency or number of data points to a value outside of the current calibrated range with correction turned on.
Parameter change not permitted	An attempt was made to perform an illegal state change or action based on the current 371XXC state. This includes attempting to store an undefined band definition. Or certain changes from the calibration state or the calibration define state when defining discrete frequencies.
Parameter value out of range Parameter out of hardware range	An attempt was made to set a parameter to a value outside of the permissible range of values for the parameter.
Standard cal method not valid for waveguide	In a waveguide type of calibration, the standard (OSL) cal method is forbidden.
Out of calibrated range	An attempt was made to change a parameter not permitted to be changed with correction on.
Start must be must be less than stop	An attempt was made to set a new start frequency, distance or time greater than or equal to the current stop frequency, distance or time. Or to set a new stop frequency, distance or time less than or equal to the current start frequency, distance or time.
Tune mode requires a 12 term calibration	Perform a 12 term calibration prior to turning on tune mode.
Current and cal frequencies different	The flat power calibration setup does not match the current setup.
Stored data is invalid	An attempt was made to reference normalized data when normalized data was invalid.
Parameter change not permitted on current state	An attempt was made to change a parameter while IF cal was active. It is not expected that this message will ever be seen. If you see this message, notify the factory.
Calibration may not be valid	An attempt was made to repeat the previous calibration when there was no record of a previous calibration.
Calibration does not exist	An attempt was made to turn on flat power correction or vector error correction when the corresponding calibration does not exist.
Current calibration is erased	When turning on Multiple Source Mode with vector error correction on, the calibration is destroyed. Not really an error. Message is issued as a warning.
Time Domain and CW mode not permitted	An attempt was made to turn on a time domain mode in CW. This is not permitted.
Not permitted in Time Domain	An attempt was made to select a group delay display or CW mode when in time do- main mode or to select a dual overlay display with a frequency/time domain mismatch.
Time Domain not allowed	An attempt was made to turn on a time domain mode but the current 371XXC state does not permit it.

Table B-3.	GPIB-Related	Error Messages	(4	of 7)
I abit D J.	ui ib mianu	LITOI MICSSages	(7	01 1)

Error Message	Description
Permitted only in diagnostic mode	Must put the 371XXC into the diagnostics mode via the SDG command before using this mnemonic.
Graph types not appropriate for dual overlay	While in dual overlay mode, and attempt was made to change one of the active graph types to a type which conflicts with dual overlay, or to change one of the active channels into or out of time domain which sets up a dual overlay conflict. Or an attempt was made to select dual overlay mode when there would be a graph type conflict for a frequency/time domain conflict.
New Discrete Fill not allowed in current state	Cannot set up a new discrete fill definition while performing a calibration or when correction is turned on. Also cannot do this when group delay is the graph type on the active channel.
Low Pass mode requires a har- monic sweep	Perform a TD harmonic sweep calibration prior to using this mnemonic.
Receiver out of range by equation	Problems with the internal source, external source or receiver equations in multiple source mode.
New start less than previous stop	An attempt was made to set the start frequency for the new multiple source mode band definition to a frequency less than the stop frequency of the previous band.
Bad filename	The supplied filename was bad. The filename can have 8 characters maximum. No extensions. The filename must start with and alpha type character (A thru Z). After that the allowable characters are alpha, numeric (0 thru 9) and underscore (_).
Conflict with rotary knob	You should not be using the rotary knob and the GPIB at the same time.
Too many data points for external source	A 6700B series external source can handle 501 data points. A 68000 series external source can handle 999 data points.
Recalled setup corrupted Hardware mismatch in recalled setup Software mismatch in recalled setup	These are problems with the recalled setup.
Too many data points for Discrete Fill	The maximum number of data points in discrete fill is 1601.
Not enough data points for Dis- crete Fill	The minimum number or data points in discrete fill is 2.
Discrete Fill end frequency out of range	The number of points for discrete fill puts the end frequency out of range.
Step is too large	When setting up a time domain harmonic sweep, cannot get 2 data points because the start frequency is too high for the approximate stop frequency. In a group delay display, the delay aperture percent of sweep is less than one step size.
Range too small	An attempt was made to set a distance or time span value too small. This can also be done via inappropriate values for start and stop.
Start or stop out of range	An attempt was made to set a distance or time start or stop value out of range. This can also be done via inappropriate values for center and span.
No bands defined	An attempt was made to turn on multiple source mode with no band definitions.

GPIB RELATED ERROR MESSAGES

Error Message	Description
Out of frequencies for new band definition Source out of range by equation External source out of range by equation	The current set of multiple source mode bands use up all the frequency range of the 371XXC. Therefore, no more bands can be defined.
File is read only	An attempt was made to write to a write protected file.
File not found	An attempt was made to access a non-existent file.
Floppy drive not ready	An attempt was made to access the floppy drive with no floppy disk installed.
Floppy disk full Hard disk full	An attempt was made to write to a floppy disk or the hard disk when no space was left on the disk.
Floppy disk write protected	An attempt was made to write to a write protected floppy disk.
Recalled setup or data file corrupt	An attempt to recall a setup from internal memory, the GPIB or disk failed due to soft- ware revision or hardware mismatch or checksum error.
New frequency list not allowed in current state	Cannot set up a new discrete fill definition while performing a calibration or when correction is turned on. Also, cannot do this when group delay is the graph type on the active channel.
State change not permitted	An attempt was made to perform an illegal state change or action based on the current instrument state. This includes attempting to store (1) an undefined band definition, (2) certain changes from the calibration state, or (3) the cal define state when defining discrete frequencies.
Faulty label or file name	The label or file name associated with the current mnemonic is faulty.
Illegal characters in filename	The first character in a filename must be an alpha type. The remaining characters can be alpha, numeric, or underscores. An extension is not permitted.
Filename too long	The maximum length for filenames is 8 characters. An extension is not permitted.
Floppy disk read error Floppy disk write error Hard disk read error Hard disk write error	Read or write error(s) occurred while attempting to access the indicated disk.
Floppy disk not found Hard disk not found General disk buffer error General floppy drive failure Floppy disk init failure General hard disk failure Hard disk control failure Hard disk init failure Unknown disk error	Other error messages which suggest that the indicated drive is in need of service.

Table B-3. GPIB-Related Error Messages (5 of 7)

Table B-3.	GPIB-Related Error Messages (6 of 7)	
------------	--------------------------------------	--

Error Message	Description
	7205 GPIB QUERY ERROR DESCRIPTIONS
No Response data available	Generated if the controller attempts to read response data from the 371XXC and none is available.
No Response data after PM completion	This is the same as the 'no response data available' case above except that a program message was currently being parsed and executed when the controller attempted to read data. Detection of this error was deferred until the parser/execution block was finished with the current program message and it was observed that no response data was generated.
Response after Indefinite Re- sponse discarded	This error is generated when the 371XXC's output queue has already received an Arbitrary ASCII response data element and an attempt is made to place another response data element of any kind into the queue. The new response data element is discarded.
Interrupted - Response data dis- carded	This error is detected when the output queue contains unread response data and the controller sends a new program message. The response data is discarded.
Unterminated - Partial PM will be executed	This error is detected when the 371XXC's input queue is currently receiving a program message but has not yet received the end message, and the controller attempts to read response data from the 371XXC. The partial program message in the input queue is executed as if it were properly terminated.
Deadlock - Response data dis- carded	This error is detected when both of the 371XXC's input and output queues are full and the controller attempts to send another data byte. In order to prevent bus deadlock, the contents of the output queue are discarded.
7205 GPIB DEVICE DEPENDENT ERROR DESCRIPTIONS	
Q_SEND failure in [a procedure name]	An unsuccessful attempt was made to send a message to a task. The procedure name is the place in the software where the error was detected.
Q_RECEIVE failure in [a proce-	A failure was detected while waiting for the reception of a message from a task.

task directed in the program message.

The procedure name is the place in the software where the error was detected.

The procedure name is the place in the software where the error was detected.

An attempt was made to allocate some temporary memory in order to accomplish a

371XXC MM

dure name]

procedure name]

Unable to allocate memory in [a

B-13

Table B-3. GPIB-Related Error Messages (7 of 7)

Error Message	Description
Unable to release memory in [a procedure name]	An attempt was made to return some temporary memory within a task and the return failed for some reason.
	The procedure name is the place in the software where the error was detected.
Unable to get service/error log	An unsuccessful attempt was made to get a copy of the service or error log.
Unable to get calibration term	An unsuccessful attempt was made to get a calibration term.
Unable to get raw or corrected data	An unsuccessful attempt was made to get raw or corrected data.
Unable to get final data	An unsuccessful attempt was made to get final data.
Unable to get setup or data	An unsuccessful attempt was made to get the frequency list from the database.
Unable to get setup	An unsuccessful attempt was made to get a front panel setup.
Unable to store setup	An unsuccessful attempt was made to save a front panel setup.
Unable to get frequency list	An unsuccessful attempt was made to get setup, trace, or tabular data from the data- base.
Unable to store label	An unsuccessful attempt was made to store a label in the database.
Calibration step failure	An error occurred while waiting for completion of a data collection sequence in calibra- tion.

ERROR MESSAGES

Table B-4. Service Log Error Messages (1 of 3)

0000 INFORMATIONAL MESSAGE	0525 PWR SUPPLY -18V FAIL
0000 SELF TEST INFO MESSAGE	0526 PWR SUPPLY +27V FAIL
0094 PRNT INTERFACE TEST PASSED	0527 PWR SUPPLY -27V FAIL
0095 PRNT INTERFACE TEST FAILED	0611 TB IF COMM FAIL
0096 GPIB INTERFACE TEST PASSED	0612 TB IF 10V REF FAIL
0097 GPIB INTERFACE TEST FAILED	0613 TB IF LEVEL STATUS FAIL
0098 SELF TEST PASSED	0614 TB PHS CONTROL FAIL
0099 SELF TEST FAILED	0711 LO3 COMM FAIL
0111 LO1 COMM FAIL	0712 LO3 REF OSC FAIL
0112 LO1 PRE TUNE DAC FAIL	0713 LO3 48.4 LCK IND FAIL
0113 LO1 PHS LCK IND FAIL	0714 LO3 48.4 LCK ERR VOL FAIL
0114 PHS LCK ERR VOL OUT OF TOL	0715 LO3 CAL REF PHS FAIL
0115 LO1 LCK TIME FAIL	0811 SL SIG SEP COMM FAIL
0211 LO2 COMM FAIL	0812 DAC ADJUSTMENT FAIL
0212 LO2 MAIN PREST DAC FAIL	0813 TRANSFER SWITCH CNTRL FAIL
0213 LO2 OFFS PREST DAC FAIL	0814 SRC LCK POL CONTROL FAIL
0214 MAIN PHS LCK ERR VOL FAIL	0815 DIRECT MODE ATTEN FAIL
0215 OFFST PHS LCK ERR VOL FAIL	0911 A9 VME BUS INTERFACE FAIL
0216 DDS PHS LCK ERR VOL FAIL	0912 BBRAM CHECK FAIL
0217 MAIN PHS LCK IND FAIL	0913 SRAM CHECK FAIL
0218 OFFST PHS LCK IND FAIL	0914 SCSI DEVICE FAIL
0219 DDS PHS LCK IND FAIL	0915 MCCHIP FAIL
0220 LO2 LCK TIME FAIL	0915 MCCHIP TIMER 1 FAIL
0221 LO2 SRC TRACKING FAIL	0916 MCCHIP TIMER 2 FAIL
0311 TA IF COMM FAIL	0917 MCCHIP TIMER 3 FAIL
0312 TA IF 10V REF FAIL	0918 MCCHIP TIMER 4 FAIL
0313 TA IF LEVEL STATUS FAIL	0919 CLOCK NOT RUNNING
0314 TA PHS CONTROL FAIL	1311 A13 VME BUS INTERFACE FAIL
0411 REF IF COMM FAIL	1312 EXT KEYBD CNTRL FAIL
0412 REF IF 10V REF FAIL	1313 FLOPPY DISK CNTRL FAIL
0413 REF IF LEV STATUS FAIL	1411 A14 VME BUS INTERFACE FAIL
0414 REF PHS CONTROL FAIL	1511 A15 VME BUS INTERFACE FAIL
0500 A TO D CONVERSION FAIL	1512 VRAM CHECK FAIL
0511 A TO D COMM FAIL	1611 HARD DISK CONTROL FAIL
0512 A TO D 8 BIT D TO A FAIL	1811 AUXILIARY IO FAIL
0513 A TO D 12 BIT A TO D FAIL	1912 FRONT PANEL CNTRL FAIL
0514 A TO D STEERING DAC FAIL	1913 ROTARY KNOB FAIL
0515 A TO D CONV ACCURACY FAIL	2111 SRC COMM FAIL
0516 A TO D SAMPL HOLD FAIL	2112 SRC FTUNE DAC FAIL
0517 IF SYNC FAIL	2113 SRC STATE MACHINE DAC FAIL
0518 PWR SUPPLY SYNC FAIL	2114 SRC FM CAL FAIL
0519 A TO D EXT ANAL OUTP FAIL	2115 SRC F TUNE PATH BND1 FAIL
0520 PWR SUPPLY +5V FAIL	2116 SRC F TUNE PATH BND2 FAIL
0521 PWR SUPPLY +9V FAIL	2117 SRC F TUNE PATH BND3 FAIL
0522 PWR SUPPLY +12V FAIL	2118 SRC F TUNE PATH BND4 FAIL
0524 PWR SUPPLY +18V FAIL	2119 SRC F TUNE PATH BND5 FAIL

SERVICE LOG ERROR MESSAGES

Table B-4. Service Log Error Messages (2 of 3)

2120 SRC F TUNE PATH BND6 FAIL	7177 HARD DISK UNAVAILABLE
2121 SRC F TUNE PATH BND7 FAIL	7199 HARD DISK INIT FAIL
2122 SRC F TUNE PATH BND8 FAIL	7200 IEEE 488.2 GPIB BUS ERROR
2123 SRC F TUNE PATH BND9 FAIL	7201 ABORTED MESSAGES
2124 SRC F TUNE PATH BND10 FAIL	7202 NOTHING TO SAY
2125 SRC PWR LEVEL DAC FAIL	7203 NO LISTENER ON BUS
2126 SRC DETECTOR ZERO CAL FAIL	7204 GPIB COMMAND ERROR
2127 SRC ALC CAL BND1 FAIL	7205 GPIB EXECUTION ERROR
2128 SRC ALC CAL BND2 FAIL	7206 GPIB DEVICE SPECIFIC ERROR
2129 SRC ALC CAL BND3 FAIL	7207 GPIB QUERY ERROR
2130 SRC ALC CAL BND4 FAIL	7210 DEDICATED GPIB BUS ERROR
2131 SRC ALC CAL BND5 FAIL	7220 PLOTTER NOT RESPONDING
2132 SRC ALC CAL BND6 FAIL	7221 PLOTTER NOT READY
2133 SRC ALC CAL BND7 FAIL	7222 PLOTTER OUT OF PAPER
2134 SRC ALC CAL BND8 FAIL	7223 PLOTTER PEN UP
2135 SRC ALC CAL BND9 FAIL	7230 POWER METER NOT RESPONDING
2136 SRC ALC CAL BND10 FAIL	7240 FRQ COUNTER NOT RESPONDING
2137 SRC A1 FM PATH TUNE FAIL	7250 EXT SOURCE NOT RESPONDING
2138 SRC A2 FM PATH TUNE FAIL	7310 PRINTER NOT RESPONDING
4100 LO1 CAL FAIL	7311 PRINTER NOT READY
4200 LO2 CAL FAIL	7312 PRINTER OUT OF PAPER
4301 SRC FREQ CAL MEAS UNSTABLE	7320 AUX I/O PORT ERROR
4302 SRC FREQ FM MAIN CAL FAIL	7330 SERIAL PORT ERROR
4303 SRC FREQ FM SENS CAL FAIL	7340 ETHERNET PORT ERROR
4304 SRC FREQ CAL VERIFY FAIL	7350 EXT TRIG RATE TOO FAST
4401 SRC ALC LOG AMP CAL FAIL	7410 EXT KYBD ERROR
4402 SRC ALC CAL VERIFY FAIL	8100 PWR FAIL
4500 IF CAL FAIL	8110 GENERAL VME BUS FAIL
4600 GAIN RANGING ERROR	8120 GENERAL MEMORY FAIL
4700 STATE MACHINE FAIL	8121 NON-VOLATILE MEMORY FAIL
5110 RF PWR UNLEVELED	8130 PROCESSING FAIL
5210 REF A CHAN RF OVERLOAD	8140 GENERAL DISK BUFFER ERR
5220 REF B CHAN RF OVERLOAD	SRC PWR CHANGED AFTER CAL
5230 TA CHAN RF OVERLOAD	ATTEN CHANGED AFTER CAL
5240 TB CHAN RF OVERLOAD	CAL DATE TOO OLD
6001 - 6128 PHASE LOCK FAILURE	CAL COEFF NOT INSTALLED
7100 FILE MARKED READ ONLY	TEMP TOO HIGH
7140 GENERAL FLOPPY DRIVE FAIL	TOO HIGH TEMP CHANGE
7142 FLOPPY DISK READ ERROR	H/W RETUNED SINCE CAL
7143 FLOPPY DISK WRITE ERROR	BAD FILENAME
7146 FLOPPY DISK CHANGED	CAL MAY BE INVALID
7147 FLOPPY DISK UNAVAILABLE	FLAT CAL MAY BE INVALID
7169 FLOPPY INIT FAIL	FLAT PWR TURNED OFF
7170 GENERAL HARD DISK FAIL	HARD COPY OUTPUT ABORTED
7172 HARD DISK READ ERROR	CORRECTION UNAVAILABLE
7173 HARD DISK WRITE ERROR	TIME DOMAIN INVALID
ERROR MESSAGES

GROUP DELAY INVALID	TRANS FREQ RESP BOTH PATHS CORR
GATE MUST BE ON	REFL ONLY PORT 1 CORRECTION
SMOOTHING INVALID	REFL ONLY PORT 2 CORRECTION
MEMORY DATA INVALID	REFL ONLY BOTH PORTS CORRECTION
NEED HARMONIC SWEEP	2 PORT FWD PATH CORRECTION
NON-LOCKED REF N/A	2 PORT REV PATH CORRECTION
PARAMETER INVALID	2 PORT FWD PATH REV DUT CORR
DATA DRAWING OFF	2 PORT REV PATH REV DUT CORR
STORED RF CORR CLEARED	12-TERM CORRECTION
STORED TRACE DATA CLEARED	DEFINING MULTIPLE SOURCE BANDS
STORED SRC FREQ CAL CLEARED	TS: LO1 VCO MAIN
STORED SRC ALC CAL CLEARED	TS: LO1 DAC MAIN
STORED INSTR STATE CLEARED	TS: LO2 VCO MAIN
INVALID MODEL NUMBER	TS: LO2 VCO OFFSET
ABORTED: H/W DIFFERENT	TS: LO2 VCO VDDS
ABORTED: S/W DIFFERENT	TS: LO2 DAC MAIN
CORRUPT OR INCOMPATIBLE FILE	TS: LO2 DAC OFFSET
NOT ALLOWED AT THIS TIME	TS: SOURCE LINEARITY
STORED SWP FREQS CLEARED	TS: SOURCE POWER
HARD COPY DATA CAPTURE FAILED	TS: FIRST IF BANDPASS
PRINTER BUSY	TS: EXTERNAL INPUT
STORED SERIAL NUMBER CLEARED	TS: NON-RATIOED PARAMETERS
END FRONT PANEL ERRORS	TS: GENERIC TROUBLESHOOTING
WORKING	WIPING OUT RESERVED PARAMETERS
CALIBRATING I.F. PLEASE WAIT	WIPING OUT FRONT PANEL MEMORIES
TRANS FREQ RESP FWD CORRECTION	SETTING SYSTEM DEFAULT VALUES
TRANS FREQ RESP REV CORRECTION	

 Table B-4.
 Service Log Error Messages (3 of 3)

Appendix C Connector Maintenance Check Procedures

Table of Contents

C-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
C-2	PRECAUTIONS · · · · · · · · · · · · · · · · · · ·
	Pin Depth Problems • • • • • • • • • • • • • • • • • • •
	Pin-Depth Tolerance · · · · · · · · · · · · · · · · · · ·
	Avoid Over Torquing Connectors
	Teflon Tuning Washers
	Avoid Mechanical Shock
	Keep Connectors Clean · · · · · · · · · · · · · · · · · · ·
	Visual Inspection \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots C-5
C-3	REPAIR/ MAINTENANCE · · · · · · · · · · · · · · · · · · ·

Appendix C Connector Maintenance Check Procedures

C-1 INTRODUCTION

C-2 PRECAUTIONS

Pin Depth Problems

Figure C-1. *N Connector Pin Depth Definition*

Figure C-2. Pin Depth Gauge

This appendix provides general, precautionary information and instructions pertaining to precision connectors.

The following paragraphs are precautionary notes relating to maintenance considerations for precision connectors

Based on ANRITSU precision components returned for repair, destructive pin depth of mating connectors is the major cause of failure in the field. When a precision component is mated with a connector having a destructive pin depth, damage will likely occur to the precision component's connector. A connector is considered to have destructive pin depth when the center pin is too long in respect to the connector's reference plane (Figure C-1).

Before mating an unknown or new device with your 371XXC Port connectors or calibration devices, always measure the pin depth of the device's connectors. Use a ANRITSU Pin Depth Gauge, or equivalent, for these measurements (Figure C-2). Also, measure the connector pin-depth of a device when intermittent or degraded performance is suspected.

Gauging sets for measuring the pin-depth of precision connectors are available from your nearest ANRITSU Service center, or from the factory. Instructions for measuring connector pin-depth are included with the gauging set(s).

Pin-Depth Tolerance	The center pin of a precision connector has a tolerances measured in mils (one mil = $1/1000$ inch). The connectors of test devices may not be precision types and they may not have the proper pin-depth. These connectors should be measured before mating to ensure suitability.
	When gauging pin depth, if the connector being measured indicates out of tolerance in the "+" region of the gauge (Table C-1), the center pin is too long. <i>Mating under this condition will likely damage the</i> <i>mating connector.</i> On the other hand, if the test device connector indi- cates out of tolerance in the "-" region, the center pin is too short. While this will not cause any damage, it will result in a poor connec- tion and a consequent degradation in performance.
Avoid Over Torquing Connectors	Over-torquing connectors is destructive; it may damage the connector center pin. Finger-tight is usually sufficient, especially on Type N con- nectors. Should it be necessary to use a wrench to tighten SMA or WSMA connectors, use a torque wrench that breaks at 8 inch-pounds. As a general rule, <i>never use pliers to tighten connectors.</i>

Port/ Conn. Type	Pi	n Depth (MILS)	Gauge Reading
GPC-7		+0.000 -0.003	Same As Pin Depth
N Male	20 7	-0.000 +0.004	20 +0.000 7 -0.004
N Female	20 7	-0.004 +0.000	
3.5 mm Male, Female		-0.000 +0.002	Same As Pin Depth
K Male, Female	+0.000 +0.0000 -0.0035		

Table C-1.	Connector	Pin-Depth	Tolerance
------------	-----------	-----------	-----------

Teflon Tuning Washers	The center conductor on many precision connectors contains a small teflon tuning washer located near the point of mating (interface). This washer compensates for minor impedance discontinuities at the interface. The washer's location is critical to the connector's performance. <i>Do not disturb it.</i>
Avoid Mechanical Shock	Precision connectors are designed to withstand years of normal bench handling. Do not drop or otherwise treat them roughly. They are laboratory-quality devices, and like other such devices, they require careful handling.
Keep Connectors Clean	The precise geometry that makes a precision connector's high perform- ance possible can be disturbed by dirt and other contamination adher- ing to connector interfaces. When not in use, keep the connectors covered.

Visual Inspection Precision connectors should be inspected periodically. Check for the following:

- □ Bent or broken center pin
- **Damaged threads**
- Other bent or damaged connector parts
- **D** Dirt or foreign material in connector cavity.

C-3 REPAIR/ MAINTENANCE

ANRITSU recommends that no maintenance other than cleaning be attempted by the customer. Any device with a suspected defective connector should be returned to ANRITSU for repair and/or service when needed.

Appendix D Performance Specification

This appendix contains a copy of the 37100C/37200C/*37300C Vector Network Analyzers Technical Data Sheet*, Anritsu part number 11410-00247. This data sheet provides performance specifications for all models in the series.

/inritsu

37100C/37200C/37300C Vector Network Analyzers

Technical Data Sheet

Vector Network Analysis up to 65 GHz

SYSTEM DESCRIPTION

The Lightning 37200C/37300C Vector Network Analyzers (VNAs) are high performance tools designed to make fast and accurate Sparameter measurements of active and passive devices across the 22.5 MHz to 65 GHz range. These network analyzers integrate a synthesized source, S-parameter test set and tuned receiver into a single compact package that is ideal for bench-top testing.

The Lightning 37100C VNAs are configured as Direct-Access Receivers for antenna, frequency conversion, and multiple output device measurements. These network analyzers consist of a synthesized source and tuned receiver in a single compact unit, with direct access provided to all four receiver samplers via the front panel. The 37100C offers the ultimate flexibility to meet most receiver measurement needs, while maintaining the ability to measure all four S-parameters with the addition of a reflectometer setup at the front end of the receiver.

Specifications for the 37100C/37200C/37300C models are detailed on the following pages.

Model Numbers	Frequency Range
37217C, 37317C	22.5 MHz to 8.6 GHz
37225C, 37325C	40 MHz to 13.5 GHz
37147C	22.5 MHz to 20 GHz
37247C, 37347C	40 MHz to 20 GHz
37169C	22.5 MHz to 40 GHz
37269C, 37369C	40 MHz to 40 GHz
37277C, 37377C	40 MHz to 50 GHz
37297C, 37397C	40 MHz to 65 GHz

High throughput measurements are achieved in each model through the use of fast, 12-term error corrected sweeps, fast GPIB data transfers and an intuitive user interface. All measurement results are displayed on a large LCD color display or on an external VGA monitor.

For maximum productivity, the VNAs include as standard features:

- ✓ Fast Sweeping Synthesized Source
- ✓ Auto Reversing Test Set (37200C/37300C models only)
- ✓ Solid-State Transfer Switch (37200C/37300C models only)
- ✓ Four Independent Display Channels
- ✓ Multiple Source Control of Two External Sources
- ✓ Four Channel Receiver
- ✓ Internal Hard and Floppy Disk Drives
- ✓ LRL/LRM Calibration
- ✓ Adapter Removal Calibrations
- ✓ Fast Measurement Throughput via GPIB
- ✓ Built-In AutoCal[®] Control

Each of the network analyzers is designed for easy upgradeability. Any version of the 37000C VNA can be upgraded to accommodate new capabilities or additional frequency ranges by ordering the appropriate upgrade kit. 37100C to 37200C or 37200C to 37300C upgrades are also supported.

A Reflectometer test set is available as a special option for the 37100C. It contains the transfer switch, both attenuators and couplers. It also offers two bias tees and a front panel amplifier loop for active device testing. As compared to a 37300C VNA, the output power and hence the dynamic range are degraded by 10 dB typically.

SYSTEM PERFORMANCE

Dynamic Range:

The tables on the next page provide two definitions of dynamic range:

"Receiver Dynamic Range" is defined as the difference between the maximum signal level at Port 2 (or at any sampler input: a_1 , a_2 , b_1 , or b_2 for a 37100C) for 0.1 dB compression and the noise floor.

"System Dynamic Range" is defined as the difference between the power incident on Port 2 in a through line connection and the noise floor.

In preparing the tables, 10 Hz IF bandwidth and 512 averages were used in calibration and measurement.

High Level Noise (typical): <0.04 dB and <0.5 degrees peakto-peak variation in a 1 kHz IF bandwidth up to 20 GHz. <0.08 dB and <1.0 degrees peak-to-peak variation up to 40 GHz. <0.25 dB and <2.5 degrees peak-to-peak variation up to 65 GHz.

Dynamic Range (37100C)

Model	Frequency (GHz)	Maximum Signal Into a _x , b _x (dBm)	Noise Floor (dBm)	Receiver Dynamic Range (dB)	Source Power (dBm, Typical)
37147C	0.0225	-18	-122	104	10
	2	-12	-106	94	8
	20	-12	-103	91	5
37169C	0.0225	-18	-122	104	10
	2	-12	-106	94	8
	20	-12	-103	91	3
	40	-15	-100	85	-3

Dynamic Range (37200C/37300C)

Model	Frequency (GHz)	Max. Signal Into Port 2 (dBm)	Noise Floor (dBm)	Receiver Dynamic Range (dB)	Port 1 Power (dBm, Typical)	System Dynamic Range (dB)*
37217C	0.0225	+3	-95	98	0	95
	2	+3	-98	101	0	98
	8.6	+3	-98	101	0	98
37225C	0.04	+20	-70	90	0	70
	2	+3	-98	101	0	98
	13.5	+3	-98	101	0	98
37247C	0.04	+20	-70	90	0	70
	2	+3	-98	101	0	98
	20	+3	-96	99	0	96
37269C	0.04	+20	-70	90	0	70
	2	+3	-98	101	0	98
	20	+3	-95	98	-5	90
	40	+3	-93	96	-15	78
37277C	0.04 2 20 40 50	+20 +3 +3 +3 +3 +3	-77 -105 -97 -95 -87	97 108 100 98 90	0 +5 -2 -7 -2	77 110 95 88 85
37297C	0.04 2 20 40 50 65	+20 +3 +3 +3 +3 +3 +3	-77 -105 -97 -95 -87 -77	97 108 100 98 90 80	0 +5 -2 -7 -2 -2	77 110 95 88 85 75
37317C	0.0225	+30	-95	125	0	95
	2	+30	-98	128	0	98
	8.6	+30	-98	128	0	98
37325C	0.04	+30	-65	95	+5	70
	2	+30	-93	123	+5	98
	13.5	+30	-93	123	+5	98
37347C	0.04	+30	-65	95	+5	70
	2	+30	-93	123	+5	98
	20	+30	-91	121	+5	96
37369C	0.04	+30	-65	95	0	70
	2	+30	-93	123	+5	98
	20	+30	-90	120	0	90
	40	+30	-83	113	-7	76
37377C	0.04	+30	-77	107	0	77
	2	+30	-105	135	+5	110
	20	+30	-97	127	-2	95
	40	+30	-95	125	-7	88
	50	+30	-87	117	-2	85
37397C	0.04 2 20 40 50 65	+30 +30 +30 +30 +30 +30 +30	-77 -105 -97 -95 -87 -77	107 135 127 125 117 107	0 +5 -2 -7 -2 -2	77 110 95 88 85 75

*System Dynamic Range is based on the typical Port 1 power and specified noise floor at the indicated frequency range.

Test Port Characteristics

The specifications in the table below apply when the proper Model 34U Universal Test Port Adapters are connected, with or without phase equal insertables, to the test set ports and calibrated with the appropriate calibration kit at $23 \pm 3^{\circ}$ C using the OSL calibration method with a sliding load to achieve 12-term error correction. (90 min. warm-up time is recommended)

Connector	Frequency (GHz)	Directivity (dB)	Source Match (dB)	Load Match (dB)	Reflection Frequency Tracking (dB)	Transmission Frequency Tracking (dB)	Isolation (dB)
GPC-7	0.0225	>52	>44	>52	±0.003	±0.004	>105
	2	>52	>44	>52	±0.003	±0.004	>115
	18	>52	>42	>52	±0.004	±0.012	>112
GPC-7 LRL	2	>60	>60	>60	±0.001	±0.001	>115
Calibration	8	>60	>60	>60	±0.001	±0.001	>112
N-Type*	0.0225	>46	>36	>46	±0.004	±0.004	>105
	2	>44	>36	>44	±0.004	±0.004	>115
	18	>40	>32	>40	±0.005	±0.012	>112
3.5mm	0.0225	>44	>40	>44	± 0.005	±0.030	>105
	2	>44	>40	>44	± 0.005	±0.030	>115
	20	>44	>38	>44	± 0.006	±0.050	>110
	26.5	>44	>34	>44	± 0.006	±0.070	>102
к	0.0225 2 20 40	>42 >42 >42 >42 >38	>40 >40 >38 >34	>42 >42 >42 >42 >38	± 0.005 ± 0.005 ± 0.006 ± 0.006	±0.030 ±0.050 ±0.070 ±0.080	>105 >115 >110 >100
V	0.04 2 20 40 50 65	>40 >40 >36 >34 >34	>36 >36 >36 >32 >30 >28	>40 >40 >36 >34 >34	± 0.050 ± 0.050 ± 0.060 ± 0.080 ± 0.100	± 0.030 ± 0.050 ± 0.070 ± 0.080 ± 0.100 ± 0.120	>105 >115 >110 >100 >90 >80

*Standard OSL calibration, sliding load not required.

Measurement Throughput: Measurement times are based on a single 40 MHz to 20 GHz sweep with 10 kHz IF bandwidth (no averages) after a full 12-term calibration. Sweep times include retrace and band switch times.

Measurement Time (ms) vs. Data Points (typical)

Calibration	Data Points					
Туре	3	51	101	401	1601	
1 Port (3 Term)	75	270	350	920	3000	
2 Port (12 Term)	60	250	340	920	3000	

Measurement Time vs. Sweep Mode for 101 Data Points (typical)

Sweep Mode	Time (ms)
Linear	350
List	350
CW	190

Measurement Time vs. IF BW for 101 Data Points (typical)

IF Bandwidth	Time (ms)
10 kHz	180
1 kHz	270
100 Hz	1100
10 Hz	7300

Measurement Time vs. Span for 101 Data Points (typical)

Frequency Span	Time (ms)
40 MHz to 65 GHz	900
40 MHz to 40 GHz	450
20 GHz to 40 GHz	340
10 GHz to 11 GHz	220

MEASUREMENT UNCERTAINTY

The following graphs give measurement uncertainty after 12-Term vector error correction. The errors are worst case contributions of residual directivity, load and source match, frequency response, isolation, network analyzer dynamic accuracy, and connector repeatability. In preparing the following graphs, 10 Hz IF bandwidth and averaging of 512 points were used. Changes in the IF bandwidth or averaging can result in variations at low levels.

Models 37x47C Series (K-Connectors)

Reflection Measurements:

Models 37x47C Series (K-Connectors) Transmission Measurements:

Models 37x69C Series (K-Connectors)

Reflection Measurements:

Models 37x69C Series (K-Connectors) Transmission Measurements:

Model 37x77C and 37x97C (V-Connectors) Reflection Measurements:

Model 37x77C and 37x97C (V-Connectors) Transmission Measurements:

MEASUREMENT CAPABILITIES

Number of Channels: Four independent measurement channels.

Parameters: S11, S21, S22, S12, or user defined combinations of a1, a2, b1, and b2. All measurements are made without the need to manually reverse the test device. For the 37100C models, a reflectometer setup at the front end of the receiver is required for S-measurements. (See diagram on this page)

Measurement Frequency Range: Frequency range of measurement can be narrowed within the calibration range without recalibration. CW mode permits single frequency measurements, also without recalibration.

Domains: Frequency Domain, CW Draw, and optional High Speed Time (Distance) Domain.

Formats: Log Magnitude, Phase, Log Magnitude and Phase, Smith Chart (Impedance), Smith Chart (Admittance), Linear Polar, Log Polar, Group Delay, Linear Magnitude, Linear Magnitude and Phase, Real, Imaginary, Real and Imaginary, SWR and Power.

Data Points: 1601 maximum. Data points can be switched to a value of 801, 401, 201, 101 or 51 points without recalibration (if 1601 points were used in the calibration). In addition, the system accepts an arbitrary set of N discrete data points where $2 \le N \le 1601$. CW mode permits selection of a single data point without recalibration.

Reference Plane: Can be entered in time or in distance (when the dielectric constant is entered). Automatic reference plane feature adds the correct electrical length (delay) compensation at the push of a button. Software compensation for the electrical length difference between reference and test is always accurate and stable since measurement frequencies are always synthesized. In addition, the system compensates reference phase delay for dispersive transmission media, such as waveguide and microstrip.

Markers: Six independent markers can be used to read out measurement data. In delta-reference mode, any one marker can be selected as the reference for the other five. Markers can be directed automatically to the minimum or maximum of a data trace.

Enhanced Markers: Marker search for a level or bandwidth, displaying an active marker for each channel, and discrete or continuous (interpolated) markers.

Marker Sweep: Sweeps upward in frequency between any two markers. Recalibration is not required during the marker sweep.

Limit Lines: Either single or segmented limit lines can be displayed. Two limit lines are available for each trace.

Single Limit Readouts: Interpolation algorithm determines the exact intersection frequencies of test data and limit lines.

Segmented Limits: A total of 20 segments (10 upper and 10 lower) can be generated per data trace. Complete segmented traces can be offset in both frequency and amplitude.

Test Limits: Both single and segmented limits can be used for PASS/FAIL testing. The active channel's PASS or FAIL status is indicated on the display after each sweep. In addition, PASS/FAIL status is output through the rear panel I/O connector as selectable TTL levels (PASS=0V, FAIL=+5V or PASS=+5V, FAIL=0V).

Tune Mode: Tune Mode optimizes sweep speed in tuning applications by updating forward S-parameters more frequently than reverse ones. This mode allows the user to select the ratio of forward sweeps to reverse sweeps after a full 12-term calibration. The ratio of forward sweeps to reverse sweeps can be set anywhere between 1:1 to 10,000:1.

Data Averaging: 1 to 4096 averages can be selected. A frontpanel button turns data averaging on/off, and an LED indicates when averaging is active.

Video IF Bandwidth: Front panel button selects four levels of video IF bandwidth: MAXIMUM (10 kHz), NORMAL (1 kHz), REDUCED (100 Hz) and MINIMUM (10 Hz).

Trace Smoothing: Functions similarly to Data Averaging but computes an average over a percentage range of the data trace. The percentage of trace to be smoothed can be selected from 0 to 20% of trace. Front-panel button turns smoothing on/off, and an LED indicates when smoothing is active.

Group Delay Aperture: Defined as the frequency span over which the phase change is computed at a given frequency point. The aperture can be changed without recalibration. The minimum aperture is the frequency range divided by the number of points in calibration and can be increased to 20% of the frequency range without recalibration. The frequency width of the aperture and the percent of the frequency range are displayed automatically.

Group Delay Range: The maximum delay range is limited to measuring no more than +180° of phase change within the aperture set by the number of frequency points. A frequency step size of 100 kHz corresponds to 10 ms.

DISPLAY CAPABILITIES

Measurement Channels: Four independent channels are available to display any S-parameter or user defined parameter, in any format, with up to two traces per channel for a maximum of eight traces simultaneously. A single channel, two channels (1 and 3, or 2 and 4), or all four channels can be displayed simultaneously. Channels 1 and 3, or channels 2 and 4 can be overlaid.

Display: Color LCD, 8.5" diagonal.

Display Colors: The color of data traces, memory, text, markers and limit lines are all user definable.

Trace Overlay: Displays two data traces on the active channel's graticule simultaneously.

Trace Memory: A separate memory for each channel can be used to store measurement data for later display or subtraction, addition, multiplication or division with current measurement data.

Scale Resolution (minimum per division):

Log Magnitude: 0.001 dB	Linear Magnitude: 1 pU
Phase: 0.01°	Group Delay: 0.001 ps
Time: 0.001 ms	Distance: 0.1 µm
SWR: 1 pU	Power: 0.01 dB
Autoscale: Automatically sets	Resolution and Offset to fully

display measurement data.

Reference Position: Can be set at any graticule line.

Annotation: Type of measurement, vertical and horizontal scale resolution, start/stop or center/span frequencies, and reference position.

Blank Frequency Information: Blanking function removes all references to frequencies on the display. Frequency references can only be restored through a system reset or GPIB command.

SIGNAL SOURCE CAPABILITIES

Frequency Resolution: 1 kHz (1 Hz standard on 37x17C and optional on Microwave units, Option 10A)

Source Power Level: The source power (dBm) may be set from the front panel menu or via GPIB. Check the graphs and tables on the following pages for the range.

In addition, on 37300C models, the port 1 power may be attenuated in 10 dB steps, using the internal 70 dB (60 dB for 37377C and 37397C) step attenuator. Similarly, high input signals into port 2, not exceeding 1 watt, can be attenuated up to 40 dB, using the internal port 2 step attenuator.

Power Accuracy: ±0.5 dB at 2 GHz at default power.

Power Meter Correction: The 37000C offers a user-selectable feature that corrects for test port power variations and slope (on Port 1) using an external power meter. Power meter correction is available at a user-selectable power level, if it is within the power adjustment range of the internal source. Once the test port power has been flattened, its level may be changed within the remaining power adjustment range of the signal source.

Set-On Receiver Mode: The 37300C can be configured to measure the relative harmonic level of test devices with Set-On Receiver Mode capability. The 37300C's unique phase locking scheme allows it to operate as a tuned receiver by locking all of its local oscillators to its internal crystal reference oscillator. Set-On Receiver Mode capability significantly increases the versatility of the 37300C VNA in applications that check for harmonics, intermodulation products, and signals of known frequency.

Multiple Source Control Capability: Multiple Source Control capability allows a user to independently control the frequencies of two sources and the receiver without the need for an external controller. The frequency ranges and output powers of the two sources may be specified. A frequency sweep may be comprised of up to five separate bands, each with independent source and receiver settings, for convenient testing of frequency translation devices such as mixers. Up to five sub-bands may be tested in one sweep. This feature enables users to easily test mixers, up/down converters, multipliers, and other frequency conversion devices.

Source #1: The 37000's internal source, or any of the 68XXXC, 69XXXB, 6700B or MG369XA synthesizers.

Source #2: Any of the 68XXXC, 69XXXB, 6700B or MG369XA synthesizers.

Sweep Type: Linear, CW, Marker, or N-Discrete point sweep.

Spurious Response (Harmonics):

15 dBc (37277C, 37297C, 37325C, 37347C, 37369C, 37377C, 37397C) at maximum rated power 35 dBc (all other models) at maximum rated power

Spurious Response (Nonharmonics):

35 dBc at maximum rated power

Phase Noise:

>60 dBc/Hz at 10 kHz offset and 20 GHz center frequency

Frequency Stability:

Standard Time Base: Aging: <1 x 10⁻⁶/day Stability: <1 x 10⁻⁶ over +15°C to +50°C range

High Stability Time Base (Option 10A): Aging: <1 x 10⁻⁹/day Stability: <5 x 10⁻⁹ over 0° to +55°C range

Power Range*

Model	Rated Power (dBm)	Minimum Power (dBm)	Resolution (dB)
37147C	+5	-15	0.05
37169C	-3	-23	0.05
37217C	0	-20	0.05
37225C	0	-20	0.05
37247C	0	-20	0.05
37269C	-15	-27	0.05
37277C	-7	-27	0.05
37297C	-7	-19	0.05
37317C	0	-95	0.05
37325C	+5	-90	0.05
37347C	+5	-90	0.05
37369C	-7	-97	0.05
37377C	-7	-87	0.05
37397C	-7	-79	0.05

Power Flatness

Frequency Range (GHz)	Flatness (dB)
0.0225 to 13.5	±1.5
13.5 to 20	±2.0
20 to 40	±3.0
40 to 65	±5.0

*Control Power for 37x17C, 37x25C, and 37x47C can be set to +10 dB but is not guaranteed. Similarly Control Power on the 37x69C, 37x77C, and 37x97C can be set to +20 dB but not guaranteed. Complete Control Power range also not guaranteed over temperature.

Available Source Power

Model 37277C and 37297C Source Power

Available Source Power

VECTOR ERROR CORRECTION

There are five built-in methods of calibration:

- Open-Short-Load-Thru (OSLT): This calibration method uses short circuits, open circuits, and terminations (fixed or sliding)
- 2) Offset-Short (waveguide): This calibration method uses short circuits and terminations.
- 3) LRL/LRM: The Line-Reflect-Line (LRL) or Line-Reflect-Match (LRM) calibration uses transmission lines and a reflective device or termination (LRM).
- TRM: The Thru-Reflect-Match calibration uses short circuits and fixed termination.
- 5) AutoCal[®]: This calibration method uses an automatic calibrator module.

There are four vector error correction models available for calibration:

- 1) Full 12-Term
- 2) One Path/Two Port
- 3) Frequency Response
- 4) Reflection Only

Full 12-Term can always be used, if desired, for all models that automatically reverse the test signal. Front-panel display indicates the type of calibration stored in memory. A front-panel button selects whether calibration is to be applied, and an LED lights when error correction data is being applied.

Calibration Sequence: Prompts the user to connect the appropriate calibration standard to Port 1 and/or Port 2. Calibration standards may be measured simultaneously or one at a time.

Calibration Standards: For coaxial calibrations the user selects SMA, 3.5 mm, GPC-7, Type N, 2.4 mm, TNC, K, V Connector or special type from the calibration menu. Use of fixed or sliding loads can be selected for each connector type. User defined calibration standards allow for entry of open capacitance, load and short inductances, load impedance, and reflection standard offset lengths.

Reference Impedance: It is possible to modify the reference impedance of the measurement to other than 50Ω (but not 0).

AutoCal®: The VNA can internally control an external AutoCal module to perform a 2-port OSLT calibration. AutoCal is a single two port calibration module with built-in, switched, and characterized OSLT standards. AutoCal provides quick, reliable, and accurate calibrations that exceed the performance of a standard broadband load OSLT calibration.

LRL/LRM Calibration: The LRL calibration technique uses the characteristic impedance of a length of transmission line as the calibration standard. A full LRL calibration consists merely of two transmission line measurements, a high reflection measurement, and an isolation measurement. The LRM calibration technique is a variation of the LRL technique that utilizes a precision termination rather than a second length of transmission line. A third optional standard, either Line or Match, may be measured in order to extend the frequency range of the calibration. This extended calibration range is achieved by mathematically concatenating either two LRL, two LRM, or one LRL and one LRM calibration(s). Using these techniques, full 12-Term error correction can be performed on the 37000C models.

Adapter Removal Calibration: Built-in Adapter Removal application software accurately characterizes and "removes" any adapter used during calibration that will not be used for subsequent device measurements. This technique allows for accurate measurement of non-insertable devices.

Dispersion Compensation: Selectable as Coaxial (nondispersive), Waveguide, or Microstrip (dispersive).

GAIN COMPRESSION MEASUREMENT CAPABILITY (37300C models only)

The 37300C simplifies amplifier Gain Compression and AM/PM measurements. Once an appropriate power and frequency schedule is selected, a power meter calibration, at a set level, will calibrate the linear VNA receiver channels, to accurately measure power in dBm. The 37300C supports the Anritsu, Giga-tronics, and Agilent power meters. To measure power, $b_2/1$, a user defined parameter, is automatically selected.

Swept Power Gain Compression: The 37300C will display traditional Power out vs. Power in or Phase vs. Power in, at one of up to 10 selectable frequencies. A separate screen will easily show Power out and Power in at 1 dB, or selected level Gain Compression, for all entered frequencies. (Check figure below)

Swept Frequency Gain Compression: Once Gain is measured at the starting power, the user increments Power in, observing Normalized Gain vs. Frequency. This aids in analyzing the most critical compression frequencies of a broadband amplifier.

Shows Power Out and Phase performance as a function of Input Power at a CW frequency.

HIGH SPEED TIME (DISTANCE) DOMAIN MEASUREMENT CAPABILITY (OPTION 2)

Option 2, High Speed Time (Distance) Domain software allows the conversion of reflection or transmission measurements from the frequency domain to the time domain. Measured S-parameter data is converted to the time domain by application of a Fast Fourier Transform (FFT) using the Chirp Z-Transform technique. Prior to conversion any one of several selectable windowing functions may be applied. Once the data is converted to the time domain, a gating function may be applied to select the data of interest. The processed data may then be displayed in the time domain with display start and stop times selected by the user or in the distance domain with display start and stop distance selected by the user. The data may also be converted back to the frequency domain with a time gate to view the frequency response of the gated data.

Lowpass Mode: This mode displays a response equivalent to the classic "TDR" (Time Domain Reflectometer) response of the device under test. Lowpass response may be displayed in either the impulse or step mode. This type of processing requires a sweep over a harmonic series of frequencies and an extrapolated or user-entered DC value.

Bandpass Mode: This mode displays a response equivalent to the time response of the device under test to a band limited impulse. This type of processing may be used with any arbitrary frequency sweep range, limited only by the test set range or device under test response.

Phasor Impulse Mode: This mode displays a response similar to the Lowpass impulse response, using data taken over an arbitrary (band limited) sweep range. Detailed information, similar to that contained in the lowpass impulse response may be used to identify the nature of impedance discontinuities in the device under test. Now, with Phasor Impulse, it is possible to characterize complex impedances on band-limited devices.

Windowing: Any one of four window functions may be applied to the initial frequency data, to counteract the effects of processing data with a finite bandwidth. These windows provide a range of trade offs of main lobe width versus sidelobe level (ringing). The general type of function used is the Blackman-Harris window with the number of terms being varied from one to four. Typical performance follows:

Type of Window (Number of Terms)	First Side Lobe Relative to Peak	Impulse Width ¹
Rectangle (1)	-13 dB	1.2W
Nominal-Hamming (2)	-43 dB	1.8W
Low Side Lobe, Blackman-Harris (3)	-67 dB	2.1W
Minimum Side Lobe, Blackman-Harris (4)	-92 dB	2.7W

¹W(Bin Width) = $1/2\Delta f$ sweep width.

Example. When $\Delta f = 40$ MHz to 40 GHz, W = 12.5 ps When $\Delta f = 40$ MHz to 65 GHz, W = 7.7 ps

Gating: A selective gating function may be applied to the time domain data to remove unwanted responses, either in a pass-band or reject-band (mask). This gating function may be chosen as the convolution of any of the above window types with a rectangular gate of user defined position and width. The gate may be specified by entering start and stop times or center and span. The gated data may be displayed in the time domain, or converted back to the frequency domain.

Time Domain Display: Data processed to time domain may be displayed as a function of time or as a function of distance, provided the dielectric constant of the transmission media is entered correctly. In the case of dispersive media such as waveguide or microstrip, the true distance to a discontinuity is displayed in the distance mode. The time display may be set to any arbitrary range by specifying either the start and stop times or the center time and span. The unaliased (non-repeating) time range is given by the formula:

Unaliased Range (ns) =	Number of Frequency Data Points	
	Frequency Sweep Range (GHz)	
The resolution is given by the formula:		
Main Lobo Width (pull pull) in	kW	
	Freq. Sweep Range (GHz)	

where kW is two times the number of window terms (for example, four for a two-term window)

For a 40 GHz sweep range with 1601 data points, the unaliased range is 40.025 nanoseconds. For a 65 GHz sweep with 1601 data points, the unaliased range is 24.646 nanoseconds.

Frequency with Time Gate: Data that has been converted to time domain and selected by the application of gating function may be converted back to the frequency domain. This allows the display of the frequency response of a single element contained in the device under test. Frequency response accuracy is a function of window and gate type, and gate width. For a full reflection, minimum gate and window accuracy is within 0.2 dB of the ungated response over a 40 GHz range.

GPIB

GPIB INTERFACES: 2 Ports, system GPIB and dedicated GPIB

System GPIB (IEEE-488.2): Connects to an external controller for use in remote programming of the network analyzer. Address can be set from the front panel and can range from 1 to 30.

Dedicated GPIB: Connects to external peripherals for network analyzer controlled operations (e.g. GPIB plotters, frequency counters, frequency synthesizers and power meters).

Interface Function Codes: SH1, AH1, T6, TE0, L4, LE0, SR1, RL1, PP1, DT1, DC0, C0.

GPIB Data Transfer Formats: ASCII, 32-bit floating point, or 64-bit floating point. 32-bit and 64-bit floating point data can be transferred with LSB or MSB first.

GPIB Data Transfer Speed (with or without cal): 150 kbyte/sec

GPIB Data Throughput Time: Throughput measurements for both tables were made as follows: start the timer, trigger a sweep, wait for a full sweep, transfer data across the GPIB and stop the timer. Data throughput times are shown separately for measurements made without calibration and with full two-port, 12-Term calibration. Measurement conditions: 40 MHz to 20 GHz sweep, single channel, log magnitude display, 10 kHz IF bandwidth, and output final data.

Throughput Times (ms) without Correction (typical)

Data Format	3 Points*	101 Points	401 Points	1601 Points
32 Bit	150	500	1200	3600
64 Bit	150	500	1200	3600
ASCII	150	600	1500	4400

*3 data point sweeps taken at 2, 4, and 6 GHz

Throughput Times (ms) with 12-Term Correction (typical)

Data Format	3 Points*	101 Points	401 Points	1601 Points
32 Bit	190	950	2300	6900
64 Bit	190	950	2300	6900
ASCII	190	1000	2500	7400

*3 data point sweeps taken at 2, 4, and 6 GHz

Fast CW Operation: Fast CW is an ideal mode of operation for rapid data taking over GPIB. To achieve a fast measurement rate the display is not updated and only the raw S-parameter or user-defined parameter of the active channel is measured.

Fast CW Typical Performance

Trigger Mode	Measurement Speed (ms/point)
GPIB	1.5
External TTL	1.2
Internal	0.8

Internal Buffer Data Collection: Internal Buffer Data Collection is provided to allow saving active channel measurement data from multiple sweeps without having to synchronize and collect data at the end of each sweep. The 37000C can store up to 50,000 data point measurements, each consisting of two (real and imaginary) IEEE 754 4-byte floating point numbers. GPIB transfer

speed for the 50,000 data points is typically 2.2 seconds.

STORAGE

Internal Memory: Ten front panel states (no calibration) can be stored and recalled from non-volatile memory locations. The current front panel setup is automatically stored in non-volatile memory at instrument power-down. When power is applied, the instrument returns to its last front panel setup.

Internal Hard Disk Drive: 340 MB min., used to store and recall measurement and calibration data and front-panel setups. All files are MS-DOS[®] compatible. File names can be 1 to 8 characters long, and must begin with a character, not a number. Extensions are automatically assigned.

External SCSI Interface: Option 4 deletes the internal hard disk drive, and adds a SCSI Interface connector to the rear panel for connecting a SCSI-2 formatted hard disk drive.

Internal Floppy Disk Drive: A 3.5-inch diskette drive with 1.44 Mbytes formatted capacity is used to load measurement programs and to store and recall measurement and calibration data and frontpanel setups. Measurement data can be stored in text, S2P or Bitmap format. All files are MS-DOS compatible. File names can be 1 to 8 characters long, must begin with a character, not a number. Extensions are automatically assigned.

Measurement Data: 102.8 kbytes per 1601 point S-parameter data file.

Calibration Data: 187.3 kbytes per 1601 point S-parameter data file (12-Term cal plus setup).

Trace Memory File: 12.8 kbytes per 1601 point channel.

HARD COPY

Printer: Menu selects full screen, graphical, tabular data, and printer type. The number of data points of tabular data can be selected as well as data at markers only. Compatible with most HP and Epson printers with Parallel (Centronics) interfaces.

GPIB Plotter: The 37000 is compatible with most HP and Tektronix plotters. Menu selects plotting of full or user-selected portions of graphical data. Plotter is connected to the dedicated GPIB bus.

Performance: After selecting the Start Print button, front panel operation and measurement capability is restored to the user within 2 seconds.

INTERFACES

37000C Front Panel Connectors and Controls:

Keyboard Input: An IBM-AT compatible keyboard can be connected to the front panel for navigating through front panel menus, annotation of data files and display labels, printing displays and pausing instrument sweeps.

Test Ports (37200C and 37300C): Universal/K, male, connectors are standard on all models except for the >40 GHz models which have Universal V male test ports as standard. For additional configurations check Test Port Converters (Option 7). Bias Inputs, Port 1 and 2 (37300C): 0.5 amps maximum through BNC connectors.

Source Input Loop (37100C): Provides external source input capability, replacing the internal source.

RF Output (37100C): K, female, provides source RF output. **a₁, a₂, b₁, b₂ Inputs (37100C):** K, female, provide inputs to the samplers.

Source Lock Output (37100C): Provides a sample of the internal source, at -9 dB (typical) relative to the internal source power.

Port 1 Amplifier Loop (37300C): Provides access to insert an external amplifier, ahead of the port 1 coupler or bridge, to increase port 1 power output, up to +30 dBm (1 watt) maximum.

37000C Rear Panel Connectors and Controls:

PRINTER OUT: Centronics interface for an external printer. **VGA OUT:** Provides VGA output of 37000C video display. **SERIAL:** 9-Pin male DSUB connector. Provides RS-232 serial port control for an AutoCal[®] module (3658 series).

10 MHz REF IN: Connects to external reference frequency standard, 10 MHz, +5 to -5 dBm, 50 Ω , BNC female.

10 MHz REF OUT: Connects to internal reference frequency standard, 10 MHz, 0 dBm, 50 Ω , BNC female.

EXT ANALOG OUT: -10V to +10V with 5 mV resolution, varying in proportion to user-selected data (e.g., frequency, amplitude). BNC female.

EXT ANALOG IN: ±50 volt input for displaying external signals on the LCD. BNC female.

LINE SELECTION: Power supply automatically senses 100V, 120V, 220V or 240V lines.

EXTERNAL TRIGGER: External TTL triggering for 37000C measurement. 10 k Ω input impedance, BNC female.

REFERENCE EXTENSION: The 37300C provides access to the a_1 and b_1 samplers as standard. The 37200C provides access to a_1 as an option. K female connectors are used, except for >40 GHz models where V female connectors are used.

EXTERNAL SCSI: Provides SCSI-2 connector for connection of an external SCSI hard disk drive (Option 4). **EXTERNAL I/O:** 25-pin DSUB connector.

LIMITS PASS/FAIL: Selectable TTL levels (Pass=0V, Fail=+5V or Pass=+5V, Fail=0V. Additionally, 0 volts (all displayed channels pass) or +5V (any one of 4 displayed channels fail) output pass/fail status (1 line).

PORT 1 SOURCE ATTENUATOR (37100C): Drive signal for a source external programmable step attenuator. PORT 2 TEST ATTENUATOR (37100C): Drive signal for a test external programmable step attenuator. TRANSFER SWITCH (37100C): Drive signal for an external transfer switch.

GENERAL

Power Requirements: 85-240 volts, 48-63 Hz, 540 VA maximum

Dimensions: 267 H x 432 W x 585 D mm (10.5 H x 17 W x 23 D in.)

Weight: 27 kg (60 lb)-(2-man lift required).

Storage Temperature Range: -40°C to +75°C

Operating Temperature Range: 0°C to +50°C

Relative Humidity: 5% to 95% at +40°C

EMI: Meets the emissions and immunity requirements of EN55011/1991 Class A/CISPR-11 Class A

EN50082-1/1993

IEC 801-2/1984 (4 kV CD, 8 kV AD) IEC 1000-4-3/1995 (3 V/m, 80-1000 MHz) IEC 801-4/1988 (500V SL, 1000V PL) IEC 1000-4-5/1995 (2 kV L-E, 1 kV L-L)

LRL/LRM–Calibration method of Rohde & Schwarz, Germany. GPC-7 is a registered trademark of Amphenol Corporation. K Connector and V Connector are registered trademarks of Anritsu Company. MS-DOS is a registered trademark of Microsoft Corporation.

CE

Sales Centers: United States

Canada South America

(800) ANRITSU (800) ANRITSU 55 (21) 286-9141

Printed in USA December 2001; Rev: B Data subject to change without notice Europe

Sales Centers:

. 44 (0) 1582 433433 81 (03) 3446-1111 Japan Asia-Pacific 65-2822400

Discover What's Possible™ Microwave Measurements Division • 490 Jarvis Drive • Morgan Hill, CA 95037-2809 http://www.us.anritsu.com • FAX (408) 778-0239

11410-00247

37100C/37200C/37300C Vector Network Analyzers Technical Data Sheet /GIP-C

Appendix E Millimeter Wave Service Instructions

Contents

E-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
E-2	DESCRIPTION · · · · · · · · · · · · · · · · · · ·
E-3	REPLACEABLE PARTS · · · · · · · · · · · · · · · · · · ·
E-4	PERFORMANCE VERIFICATION-GENERAL · · · · · · · · E-4
	Required Equipment · · · · · · · · · · · · · · · · · · ·
E-5	PERFORMANCE VERIFICATION– IF POWER LEVEL TEST······E-6
	Test Setup · · · · · · · · · · · · · · · · · · ·
E-6	PERFORMANCE VERIFICATION– HIGH LEVEL NOISE TEST, TRANSMISSION · · · · · · · · · E-8
	Test Setup · · · · · · · · · · · · · · · · · · ·
E-7	PERFORMANCE VERIFICATION– HIGH LEVEL NOISE TEST, REFLECTION · · · · · · · · · · E-10
	Test Setup · · · · · · · · · · · · · · · · · · ·
E-8	PERFORMANCE VERIFICATION– SYSTEM DYNAMIC RANGE TEST · · · · · · · · · · · · · · · E-12
	Calibration · · · · · · · · · · · · · · · · · · ·
E-9	PERFORMANCE VERIFICATION– SOURCE MATCH/DIRECTIVITY TEST · · · · · · · · · · · · E-15
	Test Setup · · · · · · · · · · · · · · · · · · ·

E-10	TROUBLESHOOTING $\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots $ E-20
	Define the Fault AccuratelyE-20Isolate the FaultE-20Determine the Fault LocationE-20Determine the Fault LocationE-20If the Fault is in the Signal SourcesE-21If the Fault is in the Test SetE-21RF Components CheckE-21PCB Assembly Voltage CheckE-22If the Fault is in the Millimeter Wave Module:E-23If the Fault is in the VNAE-23
E-11	SYSTEM DESCRIPTION · · · · · · · · · · · · · · · · · · ·
	System OverviewE-24Signal SourcesE-25Test SetE-25Millimeter Wave ModulesE-27Vector Network AnalyzerE-28System OperationE-28
E-12	REMOVE AND REPLACE PROCEDURES (3735B TEST SET) · · · · · · · · · · · · · · · · · · ·
	Remove CoversE-30Remove Power SupplyE-30Remove Power Distribution PCBE-33Remove Power Divide/Isolator AssemblyE-33Remove Transfer Switch AssemblyE-33Remove Transfer Switch PCB AssemblyE-33Remove Fan AssemblyE-34Remove Line Voltage ModuleE-34

Appendix E Millimeter Wave Service Instructions

E-1 INTRODUCTION This appendix provides service instructions for the 371XXC Millimeter Wave System. The information in this appendix is specific to the this system and is intended to supplement the common service instructions contained in the other parts of this manual. Also, certain information in this appendix assumes that the reader is familiar with the operation of the instrument. Operating information is contained in Chapter 11 of the 371XXC OM (Part Number: 10410-00226). E-2 DESCRIPTION The 371XXC Millimeter Wave System (371XXCmm) consists of a 37147C or 37169C VNA, two 680XXC Frequency Synthesizers, and a 3735B Millimeter Test Set having two 374X Millimeter Wave Modules. There are 14 different 374X modules available (below) to accommodate different measurement types and frequency ranges. **D** 3741A-Q 3 to 50 GHz Transmission Module □ 3741A-V 50 to 75 GHz Transmission Module □ 3741A-E 60 to 90 GHz Transmission Module □ 3741A-EE56 to 94 GHz Transmission Module □ 3741A-W 75 to 110 GHz Transmission Module □ 3741A-EW 65 to 110 GHz Transmission Module □ 3741A-F 90 to 140 GHz Transmission Module □ 3740A-Q 33 to 50 GHz Transmission/Reflection Module □ 3740A-V 50 to 75 GHz Transmission/Reflection Module □ 3740A-E 60 to 90 GHz Transmission/Reflection Module □ 3740A-EE 56 to 94 GHz Transmission/Reflection Module □ 3740A-W 75 to 110 GHz Transmission/Reflection Module □ 3740A-EW 65 to 110 GHz Transmission/Reflection Module □ 3740A-F 90 to 140 GHz Transmission/Reflection Module

MILLIMETER WAVE SYSTEM SERVICE INSTRUCTIONS

$E extsf{-3}$ replaceable parts

The tables below supplement the parts lists in Chapter 2. See Figure E-1 for parts locations.

Table E-1.	3735B Millimeter	Test Set A	ssemblies /	Parts
------------	------------------	------------	-------------	-------

Assembly / Part	Part Number
3735B Power Supply	40-130
Rear Panel Transfer Switch PCB As- sembly	B45390
Transfer Switch Assembly, harnessed	B45396
Power Distribution PCB Assembly	D45631-3
Isolator	1000-49
Power Divider	1091-87
Fan Assembly	B45397
Line Module	260-34
Front Panel Connectors	B15660

Table E-2. Miscellaneous Assemblies

Assembly / Part	Part Number
Test Set / Module Interface Cable	47958
VNA / Test Set Transfer Switch Inter- face Cable	B46743
VNA / Test Set RF Cable	ND46618
Test Set / Source 1 RF Cable	ND44620
Test Set / Source 2 RF Cable	ND44621
GPIB Interface Cable, 2 meter	2100-2

E-4 PERFORMANCE General instructions for performing performance verification proce-VERIFICATION-GENERAL General instructions for performing performance verification proce-

Required Equipment The following equipment is required to perform the verification tests:

Model	Description	Quantity
Anritsu 3655 Series	Waveguide Calibration Kit, with Op- tion 1: Sliding Termination	1

Initial System Setup Set up the equipment as described below.

- *Step 1.* Remove the standard straight waveguide sections from the modules.
- *Step 2.* Install the precision-straight waveguide sections that are contained in the calibration kit on the waveguide output connector of each millimeter module.

MILLIMETERWAVE SYSTEM SERVICE INSTRUCTIONS

Figure E-1. Parts Locations

PERFORMANCE VERIFICATION IF POWER LEVEL TEST

MILLIMETER WAVE SYSTEM SERVICE INSTRUCTIONS

	MENU OPTNS OPTIONS TRIGGERS REAR PANEL OUTPUT Millimeter Wave BAND DEFINITION RECEIVER MODE SOURCE CONFIG TEST SET CONFIG PRESS <enter> TO SELECT</enter>	T pc S Step 3. Step 4. Step 5.	NOTE'hese waveguide sections (test port adapters) use high recision flanges to improve connection repeatability and alibration quality. They must be used to insure specified ystem performance.Apply power to the synthesizers and then the network ana- lyzer.Press Option Menu, select TEST SET CONFIG from the dis- played men (left) to configure the system for the types of millimeter modules used.Allow the system to warm up for at least 60 minutes to en- sure operation to performance specifications.
E-5	, PERFORMANCE VERIFICATION–IF POWER LEVEL TEST	This test erly. Mea test.	verifies that each individual receiver channel operates prop- asurement calibration of the system is not required for this

Test Setup Set up the test equipment as described below.

- **Step 1.** Install a flush short on the output of the 3740A-X module to PORT 1.
- *Step 2.* Set up the network analyzer as shown below.

Кеу	Menu Choice		
SETUP MENU	START: Low-end Frequency		
	STOP: High-end Frequency		
CHANNEL MENU	DUAL CHANNELS 1 & 3		
GRAPH TYPE	LOG MAGNITUDE (both channels)		
S-PARAMS	Channel 1		
	User Ratio: a1/1		
	User Phase Lock: a1		
	Channel 3		
	User Ratio: b1/1		
	User Phase Lock: a1		
SET SCALE	RESOLUTION: 10.0 dB/DIV		
	REF VALUE: -10.0 dB (both channels)		
LIMITS	UPPER LIMIT ON See Note below		
	LOWER LIMIT ON See note below		
	(both channels)		
	Note: Refer to Table E-3 for limit line settings		

MILLIMETERWAVE SYSTEM SERVICE INSTRUCTIONS

PERFORMANCE VERIFICATION IF POWER LEVEL TEST

	Model and Frequency Range (GHz)									
Limit Type	3740A-Q 33-50	3740A-V 50-75	3740A-E 60-90	56-60	3740A-EE 60-85	85-94	3740A 65-75	-W and 374 75-100	0A-EW 100-110	3740A-F 90-140
a1/1 (a2/1) UPPER LIMIT dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
a1/1 (a2/1) LOWER LIMIT dB	-29	-27	-29	-34	-29	-39	-39	-27	-34	-39
b1/1 (b2/1) UPPER LIMIT dB	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
b1/1 (b2/1) LOWER- LIMIT dB	-26	-24	-26	-31	-26	-36	-36	-21	-31	-36

 Table E-3.
 Limit Line Settings

Test Procedure

re The test procedure is given below.

- *Step 1.* Observe sweep indicator and allow at least one complete sweep to occur.
- *Step 2.* Verify that the measurement traces fall within the limit lines.
- **Step 3.** If the second module connected to Port 2 is also a Model 3740A-X Transmission/Reflection module, change setup to that shown in below and perform step 4. Otherwise, skip to step 6.

Кеу	Menu Choice
CHANNEL MENU	DUAL CHANNELS 2 & 4
S-PARAMS	Channel 2
	User Ratio: a2/1
	User Phase Lock: a2
	Channel 4
	User Ratio: b2/1
	User Phase Lock: a2

Step 4. Install a flush short to the output of the 3740A-X module on Port 2.

PERFORMANCE VERIFICATION HIGH LEVEL NOISE TEST

MILLIMETER WAVE SYSTEM SERVICE INSTRUCTIONS

- *Step 5.* Verify that the measurement traces fall within the limit lines.
- *Step 6.* If the second module to be tested is a Model 3741A-X, connect the two modules together and change the setup to that shown below.

Кеу	Menu Choice
CH 3	ON
CHANNEL MENU	SINGLE CHANNEL
S-PARAMS	Channel 3
	User Ratio: b2/1
	User Phase Lock: a1

Step 7. Verify that the measurement trace falls within the limit lines.

The following test verifies that the high-level noise in the 371XXC Millimeter VNA System will not significantly affect the accuracy of subsequent measurements. High-level noise is the random noise that exists in the 371XXC Millimeter VNA System. Because it is non-systematic, it cannot be accurately predicted or measured. Thus, it cannot be removed using conventional error-correction techniques. Measurement calibration is not required for this test.

NOTE

This test is not applicable if you are only using a single 3740A-X module on Port 1.

Test Setup Set up the 371XXC Millimeter VNA System as shown on the following page.

E-6 PERFORMANCE VERIFICATION-HIGH LEVEL NOISE TEST, TRANSMISSION

MILLIMETER WAVE SYSTEM SERVICE INSTRUCTIONS

PERFORMANCE VERIFICATION HIGH LEVEL NOISE TEST

Кеу	Menu Choice
SETUP MENU	START: Low-end Frequency
	STOP: High-end Frequency
CHANNEL MENU	DUAL CHANNELS 1 & 3
	(two 3740A-X's)
	SINGLE CHANNEL 3
	(one 3740A-X and one 3741A-X)
GRAPH TYPE	LOG MAGNITUDE (Both channels)
SET SCALE	RESOLUTION:
	0.050 dB/DIV
	REF VALUE:
	0.0 dB
	(Both channels)
S-PARAMS	Channel 1 - S12
	Channel 3 - S21
DATA POINTS	401
VIDEO IF BW	1 KHz
LIMITS	UPPER LIMIT ON
	0.010 dB (Q Band)
	0.025 dB (V Band)
	0.030 dB (E Band)
	0.040 dB (Extended E Band)
	0.030 dB (W Band)
	0.040 dB (Extended W Band)
	0.040 dB (F Band)
	LOWER LIMIT ON
	-0.010 dB (Q Band)
	-0.025 dB (V Band)
	-0.030 dB (E Band)
	-0.040 dB (Extended E Band)
	-0.030 dB (W Band)
	-0.040 dB (Extended W Band)
	-0.040 dB (F Band)

PERFORMANCE VERIFICATION HIGH LEVEL NOISE TEST

MILLIMETER WAVE SYSTEM SERVICE INSTRUCTIONS

Test Procedure

lure The test procedure is given below.

MENU NO1 TRACE MEMORY FUNCTIONS VIEW DATA VIEW MEMORY

AND MEMORY

VIEW DATA

MEMORY SELECT

TRACE MATH STORE DATA TO MEMORY

DISK OPERATIONS

PRESS <ENTER> TO SELECT

E-7 PERFORMANCE VERIFICATION-HIGH LEVEL NOISE TEST, REFLECTION

Step 1.	Connect the two modules together.
Step 2.	If using two 3740A-X's, press Ch 1 key and perform step 3 through 9. Otherwise, go to step 10.
Step 3.	Press Trace Memory.
Step 4.	Choose VIEW DATA from menu (left) and press Enter.
Step 5.	While observing sweep indicator, allow at least two com- plete sweeps to occur. (One complete sweep if using single channel display.)
Step 6.	Choose STORE DATA TO MEMORY from menu and press Enter.
Step 7.	Choose VIEW DATA (/) MEMORY from menu and press Enter.
Step 8.	While observing sweep indicator, allow at least two com- plete sweeps to occur. (One complete sweep if using single channel display.)
Step 9.	Verify that the peak-to-peak High Level Noise falls within the area between the two limit lines.
Step 10.	Press Ch 3.
Step 11.	Repeat step 4 through 9 for channel 3.

The following test verifies that the high-level noise in the 371XXC Millimeter VNA System will not significantly affect the accuracy of subsequent measurements. High-level noise is the random noise that exists in the 371XXC Millimeter VNA System. Because it is non-systematic, it cannot be accurately predicted or measured. Thus, it cannot be removed using conventional error-correction techniques. Measurement calibration is not required for this test.

MILLIMETER WAVE SYSTEM SERVICE INSTRUCTIONS

PERFORMANCE VERIFICATION HIGH LEVEL NOISE TEST

Кеу	Menu Choice
SETUP MENU	START: Low-end Frequency
	STOP: High-end Frequency
CHANNEL MENU	DUAL CHANNELS 1 & 3
	(two 3740A-X's)
	SINGLE CHANNEL 1
	(one 3740A-X and one 3741A-X)
GRAPH TYPE	LOG MAGNITUDE (Both channels)
SET SCALE	RESOLUTION:
	0.050 dB/DIV
	REF VALUE:
	0.0 dB
	(Both channels)
S-PARAMS	Channel 1: S11
	Channel 3: S22
DATA POINTS	401
VIDEO IF BW	1 KHz
LIMITS	UPPER LIMIT ON
	0.010 dB (Q Band)
	0.025 dB (V Band)
	0.030 dB (E Band)
	0.040 dB (Extended E Band)
	0.030 dB (W Band)
	0.040 dB (Extended W Band)
	0.040 dB (F Band)
	LOWER LIMIT ON
	-0.010 dB (Q Band)
	-0.025 dB (V Band)
	-0.030 dB (E Band)
	-0.040 dB (Extended E Band)
	-0.030 dB (W Band)
	-0.040 dB (Extended W Band)
	-0.040 dB (F Band)

Test Setup Setup as shown below.

PERFORMANCE VERIFICATION SYSTEM DYNAMIC RANGE TEST

MILLIMETER WAVE SYSTEM SERVICE INSTRUCTIONS

Test Procedure

e The test procedure is given below.

MENU NO1 TRACE MEMORY FUNCTIONS VIEW DATA

VIEW MEMORY

VIEW DATA AND MEMORY

VIEW DATA (/) MEMORY

SELECT TRACE MATH

STORE DATA TO MEMORY

DISK OPERATIONS

PRESS <ENTER> TO SELECT

E-8 PERFORMANCE VERIFICATION-SYSTEM DYNAMIC RANGE TEST

Step 1.	Attach flush short to waveguide port on 3740A-X on Port 1 (and Port 2, if two are used); leave waveguide port on 3741A-X unterminated.							
Step 2.	Press Ch 1.							
Step 3.	Press Trace Memory.							
Step 4.	Choose VIEW DATA from menu and press Enter.							
Step 5.	While observing sweep indicator, allow at least two com- plete sweeps to occur. (One complete sweep if using single channel display.)							
Step 6.	Choose STORE DATA TO MEMORY from menu and press Enter.							
Step 7.	Choose VIEW DATA (/) MEMORY from menu and press Enter.							
Step 8.	While observing sweep indicator, allow at least two com- plete sweeps to occur. (One complete sweep if using single channel display.)							
Step 9.	Verify that the peak-to-peak High Level Noise falls within the area between the two limit lines.							
Step 10.	If two 3740A-X's are used, press Ch 3 and repeat step 4 through 9 for channel 3.							
This test verifies that the system meets its dynamic range specifica- tions. Dynamic range is defined as the ratio of the power incident on Port 2 in a through line connection to the noise floor at Port 2. This definition differs slightly from the classical definition of available re- ceiver dynamic range, which takes into account the maximum signal level at Port 2 for 0.1 dB compression.								
<i>must be applied</i> for this test to be valid.								

NOTE

System dynamic range is not applicable if you are using a single 3740A-X module on Port 1.

Calibration Calibrate the system as described below.

Step 1. Load the Waveguide Cal Kit Component Coefficients to the 371XXC, using the Utility Menu key.

PERFORMANCE VERIFICATION SYSTEM DYNAMIC RANGE TEST

- *Step 2.* Press Begin Cal.
- *Step 3.* Select 12-TERM calibration if two 3740A-X's are installed; otherwise, use 1 PATH 2 PORT (8-term) calibration.
- *Step 4.* Select the following:

INCLUDE ISOLATION NORMAL DATA POINTS Desired frequencies CHANGE LOAD TYPE SLIDING BEGIN CAL

- *Step 5.* Prior to measuring Isolation Devices, press Avg/Smooth Menu key, and change averaging to 512. Also, press Video IF BW key, and change to 100 Hz.
- *Step 6.* Press Enter key to resume calibration; finish as prompted.
- *Step 7.* Ensure that the Apply Cal key indicator is on after the calibration is complete.

PERFORMANCE VERIFICATION SOURCE MATCH/DIRECTIVITY TEST

MILLIMETER WAVE SYSTEM SERVICE INSTRUCTIONS

Test Procedure The test procedure is given below.

Кеу	Menu Choice					
SETUP MENU	START: Low-end Frequency					
	STOP: High-end Frequency					
CHANNEL MENU	DUAL CHANNELS 1 & 3					
	(two 3740A-X's)					
	SINGLE CHANNEL 3					
	(one 3740A-X and one 3741A-X)					
GRAPH TYPE	LOG MAGNITUDE (Both channels)					
SET SCALE	RESOLUTION:					
	20 dB/DIV					
	REF VALUE:					
	0.0 dB					
	REFERENCE LINE:					
	TOP					
	(both channels)					
S-PARAMS	Channel 1 - S12					
	Channel 3 - S21					
AVG/SMOOTH MENU	AVERAGING					
	512 MEAS. PER POINT					
AVERAGE	ON					
DATA POINTS	401					
VIDEO IF BW	100 Hz					
LIMITS	UPPER LIMIT ON					
	(Refer to Table E-4 for setting value)					
Stan 9 Attach a Tor	mination or a sliding load to the Port 1 module					
waveguide o	infinit					
wavegulue o	arput.					

Sten 1 Set up the system as shown below

- Step 3. Connect a precision termination to the Port 2 module waveguide output.
- Step 4. While observing sweep indicator, allow at least one complete sweep to occur.
- Verify that the trace falls below the limit line at all fre-Step 5. quencies.

Table E-4.	System	Dynamic	Range
------------	--------	---------	-------

Model	Q Band	V Band	E Band	Extended E Band			W Band	Exte	ended W	F Band		
Frequency Range (GHz)	33–50	50–75	60–90	56–60	60–85	85–94	75–100	65–70	75–100	100–110	90–115	115–140
System	100	97	96	90	96	80	95	85	94	89	85	80
Dynamic												
Range (dB)												
PERFORMANCE VERIFICATION SYSTEM DYNAMIC RANGE TEST

E-9 PERFORMANCE VERIFICATION–SOURCE MATCH/DIRECTIVITY TEST This test verifies that the source match and directivity of the system meet specifications. The system *must* be calibrated and the error correction *must be applied* for these tests. *NOTE*

This test is not applicable to 3741A-X module.

Test Setup Set up test equipment as described below.

NOTE

If measurement calibration is valid, skip this section.

- *Step 1.* Load the Waveguide Cal Kit Component Coefficients in the 371XXC.
- Step 2. Press Begin Cal.

NOTE

In next step, use 12-TERM calibration if two 3740A-X's are installed; otherwise, use 1PATH 2 PORT (8-term) calibration.

- *Step 3.* Using the menu prompts, perform a 12 or 8 term sliding load calibration over the full system operating range.
- **Step 4.** At the ISOLATION DEVICE menu prompt, press Avg/Smooth Menu and change averaging to 512 MEAS. PER POINT. Also, press Video IF BW and change to 100 Hz. Then press Enter to continue.
- **Step 5.** At the SLIDING LOAD menu prompt, press Avg/Smooth Menu and change averaging to 512 MEAS. PER POINT. Also press Video IF BW and change to 100 Hz. Then press Enter to continue.
- **Step 6.** At the BROADBAND LOAD menu prompt, press Avg/Smooth Menu and change averaging to 512 MEAS. PER POINT. Also press Video IF BW and change to 100 Hz. Then press Enter to continue.
- *Step 7.* Ensure that the Apply Cal key indicator is on after the calibration is complete.

PERFORMANCE VERIFICATION SOURCE MATCH/DIRECTIVITY TEST

MILLIMETER WAVE SYSTEM SERVICE INSTRUCTIONS

Test Procedure The test procedure is given below.

		1	
	Кеу	Menu Choice	
SETUP MENU		START: Low-end Frequency	
		STOP: High-end Frequency	
CHANNEL MENU		SINGLE CHANNEL	
		Channel 1	
GRAPH T	YPE	LOG MAGNITUDE	
SET SCA	LE	RESOLUTION:	
		0.1 dB/DIV	
		REF VALUE:	
		0.0 dB	
		REFERENCE LINE:	
		ТОР	
S-PARAMS		S11	
Step 2.	Attach a second high-precision waveguide section to the module on Port 1.		
Step 3.	Attach a flush short to the end of the high-precision wave- guide section.		
Step 4.	While observing the sweep indicator, allow at least one complete sweep to occur. Press Autoscale to center the		

Step 1. Set up system as shown below.

trace.

- *Step 5.* Press Marker Menu, and select MARKER 1, MARKER 2, and MARKER 3, to be ON.
- **Step 6.** Using the rotary knob, position marker 1 and marker 2 to adjacent peaks of the ripple with the greatest negative trough (or adjacent troughs if the ripple has the greatest positive peak); position marker 3 to the bottom of the trough (or the top of the peak if the ripple has the greatest positive peak). Refer to Figure 2 (next page).
- *Step 7.* Using the Marker Menu and Readout Marker key menus, record the absolute value of markers 1 and 2 as follows:
 - Subtract the lower value from the higher value
 - Divide the difference by two
 - Add the resultant to the value of the marker at the lowest peak (or the deepest trough).

This is the average value of the two peaks (or troughs).

PERFORMANCE VERIFICATION SOURCE MATCH/DIRECTIVITY TEST

S11 FORWARD REFLECTION

Figure E-2. Markers

- *Step 8.* Record the marker 3 value.
- **Step 9.** Find the absolute difference of the values recorded in step 7 and step 8. This is the Peak-to-Peak Ripple value. Use the RF Measurement Chart (Table E-5) to find the corresponding Return Loss value. This value is the measured effective test port match. Verify if it meets the specifications listed in Table 10.
- *Step 10.* Remove the flush short from the end of the high-precision waveguide section. Point the test ports away from all reflective objects.
- Step 11. Press Autoscale key to center the trace.
- Step 12. Repeat steps 6 through 8.
- **Step 13.** Find the absolute difference of the values recorded in step 7 and step 8. This is the Peak-to-Peak Ripple value. Use the RF Measurement Chart to find the corresponding Return Loss value.

PERFORMANCE VERIFICATION SOURCE MATCH/DIRECTIVITY TEST

MILLIMETER WAVE SYSTEM SERVICE INSTRUCTIONS

Table E-5. RF and Microwave Measurement Chart

Conversion tables for Return Loss, Reflection Coefficient, and SWR with tabular values for interaction of a small phasor x with a large phasor (unity reference) expressed in dB related to reference.

					Relative to U	nity Reference	
	SWR	Reflection Coefficient	Return Loss (dB)	X dB Below Reference	REF + X dB	REF – X dB	REF / X Peak to Peak Ripple dB
	17.3910 8.7242	0.8913 0.7943	1 2	1 2	5.5350 5.0780	-19.2715 -13.7365	24.8065 18.8145
(1 + X)	5.8480	0.7079	3	3	4.6495	-10.6907	15.3402
	3.5698	0.5623	5	5	3.8755	-7.1773	11.0528
X	3.0095	0.5012	6	6	3.5287	-6.0412	9.5699
	2.6146	0.4467	7	7	3.2075	-5.1405	8.3480
	2.3229	0.3961	o g	9	2.9100	-4.4096	6 4439
	1.9250	0.3162	10	10	2.3866	-3.3018	5.6884
(1 - X)	1.7849	0.2818	11	11	2.1567	-2.8756	5.0322
(BEF)	1.6709	0.2512	12	12	1.9465	-2.5126	4.4590
()	1.5769	0.2239	13	13	1.7547	-2.2013	3.9561
	1.4965	0.1995	14	14	1.5602	-1.9331	3 1224
	1.4320	0.1770	15	15	1.4210	-1.7007	0.1224
PHASOR	1.3767	0.1585	16	16	1.2778	-1.4988	2.7766
INTERACTION	1.3290	0.1413	17	17	1.1476	-1.3227	2.4703
TERM002.DRW	1.2880	0.1259	18	18	1.0299	-1.1687	2.1986
	1.2222	0.1122	20	20	0.9237	-0.9151	1.7430
	1.1957	0.0891	21	21	0.7416	-0.8108	1.5524
	1.1726	0.0794	22	22	0.6639	-0.7189	1.3828
	1.1524	0.0706	23	23	0.5941	-0.6376	1.2319
	1.1192	0.0562	25	25	0.4752	-0.5027	0.9779
	1.1055	0.0501	26	26	0.4248	-0.4466	0.8714
	1.0935	0.0398	28	28	0.3391	-0.3529	0.6919
	1.0736	0.0355	29	29	0.3028	-0.3138	0.6166
	1.0653	0.0316	30	30	0.2704	-0.2791	0.5495
	1.0580	0.0282	31	31	0.2414	-0.2483	0.4897
	1.0515	0.0251	32	32	0.2155	-0.2210	0.4365
	1.0458	0.0224	33	33	0.1923	-0.1967	0.3890
	1.0407	0.0200	34	34	0.1716	-0.1751	0.3467
	1.0322	0.0158	36	36	0.1366	_0 1388	0.2753
	1.0287	0.0141	37	37	0.1218	-0.1236	0.2454
	1.0255	0.0126	38	38	0.1087	-0.1100	0.2187
	1.0227	0.0112	39	39	0.0969	-0.0980	0.1949
	1.0202	0.0100	40	40	0.0864	-0.0873	0.1737
	1.0180	0.0089	41	41	0.0771	-0.0778	0.1548
	1.0160	0.0079	42	42	0.0687	-0.0693	0.1380
	1.0143	0.0071	43	43	0.0613	-0.0617	0.1230
	1.0113	0.0056	44	44	0.0487	-0.0490	0.0977
	1 0101	0.0050	46	46	0.0424	0.0426	0.0971
	1.0101	0.0050	46	46	0.0434	-0.0436	0.0871
	1.0080	0.0040	48	48	0.0345	-0.0346	0.0692
	1.0071	0.0035	49	49	0.0308	-0.0309	0.0616
	1.0063	0.0032	50	50	0.0274	-0.0275	0.0549
	1.0057	0.0028	51	51	0.0244	-0.0245	0.0490
	1.0050	0.0025	52	52	0.0218	-0.0218	0.0436
	1.0045	0.0022	53	53	0.0194	-0.0195	0.0389
	1.0040	0.0020	54 55	54	0.0173	-0.0173	0.0347
	1.0000	0.0010	55	55	0.0104	0.0100	0.0000
	1.0032	0.0016	56 57	56 57	0.0138	-0.0138	0.0275
	1.0026	0.0014	58	58	0.0123	-0.0123	0.0245
	1.0022	0.0011	59	59	0.0097	-0.0098	0.0195
	1.0020	0.0010	60	60	0.0087	-0.0087	0.0174
	L			1			

Step 14. Find the corresponding 1 + X or 1 - X value from the RF Measurement Chart. Use the following formula to calculate the effective directivity value:

For ripple with negative trough,

Effective Directivity = Return Loss value + (Absolute Value of Marker 3) - (1 - X)

For ripple with positive peak,

Effective Directivity = Return Loss value + (Absolute Value of Marker 3) + (1 + X)

Verify if the calculated value meets the directivity specifications listed in Table E-6.

				Extended		Extended	
Model	Q Band	V Band	E Band	E Band	W Band	W Band	F Band
Frequency							
(GHz)	33 to 50	50 to 75	60 to 90	56 to 94	75 to 110	65 to 110	90 to 140
Directivity							
(dB)	46	46	46	44	46	40	43
Source Match							
(dB)	45	37	36	33	36	30	32

Table E-6. Directivity and Source Match Specifications

<i>E-10</i>	TROUBLESHOOTING	The 371XXC Millimeter Wave VNA System is a complex system con- sisting of four main component groups:
		Signal Sources
		Test Set
		Millimeter Wave Modules
		Vector Network Analyzer
		A failure occurring in any of the main components will affect the oper- ation of the entire system. Thus, it is essential to be familiar with how each component functions and how it interacts with the other compo- nents. Refer to System Description (page E-24) for a functional de- scription of each module.
		The procedures described in this section provide a general approach to troubleshooting the 371XXC Millimeter Wave VNA System problems.
		There are two basic steps for troubleshooting the 371XXC Millimeter Wave VNA System:
	Define the Fault Accurately	There is no benefit in trying to locate a fault (problem) that is vaguely defined. The symptoms must be accurately noted and this means that a functional test must be made on the system.
		What are system level symptoms?
		Which units function OK?
	Isolate the Fault	Find:
		The sweep direction that the fault occurs
		The frequency that the fault occurs
	Determine the Fault	Use the following to determine the fault location.
	Location	If the problem occurs in both sweep directions at all frequencies, the fault could be in the Signal Sources, test set or the VNA.
		If the problem occurs in both sweep directions at only certain fre- quencies, the fault could be in the Signal Sources.
		If the problem occurs in only one sweep direction, the fault could be in the Test Set or the Millimeter Wave Module.
		The defective component can also be isolated by substituting a known good component, swapping components, and performing the necessary tests.

PERFORMANCE VERIFICATION SOURCE MATCH/DIRECTIVITY TEST

<i>If the Fault is in the Signal Sources</i>	Generally, a problem occurring in the Signal Source (Synthesizer) will cause the instrument to display error codes on the front panel display during the self-test routine. Refer to 680XXC/681XXC Maintenance Manual for Synthesizer problems.
If the Fault is in the Test Set	Faults occurring in the Millimeter Wave Test Set can be divided into two types of problems:
	 RF Components Problems PCB Assembly Problems
RF Components Check	Use the following procedure to check the RF signal paths.

Step 1. Setup equipment as shown below

Кеу	Menu Choice
SETUP MENU	START: 8 GHz
	STOP: 20 GHz
CHANNEL MENU	DUAL CHANNELS 1 & 3
GRAPH TYPE	LOG MAGNITUDE
SET SCALE	RESOLUTION:
	3.5 dB/DIV
	REF VALUE:
	0.0 dB
	REFERENCE LINE:
	0.0 dB
	(both channels)
S-PARAMS	Channel 1 - S12
	Channel 3 - S21
DATA POINT	401
VIDEO IF BW	100 Hz

Step 2. Perform a Both Path Transmission Response Calibration. Refer to Chapter 7, paragraph 7-4, of the 371XXC Operation Manual.

> Use a through cable to connect b1 and RF Output for forward throughline calibration and connect b2 and RF Output for reverse throughline calibration. If the 371XXC includes option 13 (Deleted Source), connect to the RF Output of Source 1 instead.

Step 3. Select SINGLE CHANNEL and CHANNEL 3. Measure the transmission loss for the signal paths shown below:

NOTE

When measuring RF Input to Port 2 RF Output signal path, select channel 1 and toggle the transfer switch for Port 2 signal path.

Measure Isolation between Port 1 RF Output and Port 2 RF Output. Verify that the isolation is 50 dB minimum.

This can be done after RF Input to Port 1 RF Output transmission loss has been measured. Remove the cable connecting to Port 1 RF Output and then connect it to Port 2 RF Output. Leave the other connections in their original places.

Signal Paths	Transmission Loss Specifications	371XXC Channel Selection
LO Input to Port 1 LO Output	-7 dB maximum	S21
LO Input to Port 2 LO Output	-7 dB maximum	S21
RF Input to Port 1 RF Output	-4.5 dB maximum	S21
RF Input to Port 2 RF Output	-4.5 dB maximum	S12

Step 4. Replace components as follows:

- If LO Input to Port X LO Output test fails, replace the power splitter.
- If RF Input to Port X RF Output test fails, replace the transfer switch.

PCB Assembly Voltage Check

Use the following procedure to check the PCB Assembly.

- *Step 1.* Apply Line voltage to the test set.
- *Step 2.* Use a DMM to measure the DC voltage at each of the five test points shown below.

Measured Test Point	Reference Test Point	DC Voltage
TP2	TP1	+15.000V ±50mV
TP3	TP1	+5.00V ±0.2V
TP4	TP1	<0.3V
TP5	TP1	<0.3V

	Step 3 .	Replace components as follows:
		 If fails, replace the Power Distribution PCB Assembly. If the step 3 does not correct the problem, replace 40-127 Power Supply.
e Fault is in the Allimeter Wave	A probler up in the	n occurring in the millimeter wave module will usually show IF Power Level Test (page E-6).
moaute:	One and vers	of the troubleshooting tools is to switch the suspect module its associated interface cable from Port 1 to Port 2 or vice a and check if the problem migrates to the other Port.
		If yes, then switch the associated interface cables.
	🗆 Che	ck again if the problem migrates with the interface cable.
	=	If yes, the problem is in the cable.
	-	If no, the problem is in the millimeter wave module.
	The milli should be Chapter 2	meter wave modules are not field repairable. Failed modules e returned to your local service centers for repair (refer to 2).
<i>If the Fault is in the VNA</i>	Generally to display	y, problems that occur in the VNA will cause the instrument y error codes and be recorded to the Service Log.
	However, lem occur to genera	since the VNA is the controller of the entire system, a prob- ring in another part of the system may also cause the VNA te an error message and record the failure to the service log.
	Do not as	sume that a VNA error code is related to a VNA problem.
	One of ex problem o surement (S12, S22	ample is the "6024 PHS LCK FAIL DE" error message. If a cuts off the signal sent to the a1 input during forward mea- c (S11, S21) or the a2 input during reverse measurement c), the VNA will display this 6024 error.

Refer to Chapter 5 of this manual for 371XXC problems.

If the M

371XXC MM

SYSTEM DESCRIPTION

MILLIMETER WAVE SYSTEM SERVICE INSTRUCTIONS

<i>E-11</i>	SYSTEM DESCRIPTION	The system description is provided below.
	System Overview	The 371XXC Millimeter Wave VNA system consists of four main component groups:
		Signal Sources
		Test Set
		Millimeter Wave Modules
		Vector Network Analyzer

Figure E-3 shows the 371XXC Millimeter Wave VNA system configuration and illustrates the interconnections between signal source, test set, millimeter wave modules, and VNA. The following paragraphs contain brief descriptions of each system component groups.

Figure E-3. 371XXC Millimeter Wave VNA System Interconnections

Signal SourcesTwo Model 680XXC Synthesizers are used in the 371XXC Millimeter
Wave VNA System. They are controlled by the 371XXC VNA via
GPIB.One680XXC Synthesizer provides the LO drive signal for the system.
It is used in 8 to 19 GHz frequency range and its power is set to +17
dBm. Note: Option 15 is required.The other 680XXC Synthesizer is used to provide the RF drive signal
for the system. It is used in 9 to 23 GHz frequency range and its
power is set to +13 dBm. Note: Option 15 is required for this Source

for F-Band operation.

Test Set The 3735B test set (Figures E-4 and E-5) contains the transfer switch, and a PCB Assembly which contains the power supply for the millimeter wave modules, and transfer switch and front panel LED's control logic circuitry.

Figure E-4. 3735B Test Set Overall Block Diagram

SYSTEM DESCRIPTION

Figure E-5. 3735B Test Set PCB Assembly Block Diagram

The RF drive signal from the synthesizer is switched in the test set using the transfer switch to provide RF to both the Port 1 and Port 2 millimeter wave modules.

Millimeter Wave
ModulesThe 3740A-X Millimeter Wave module (Figure E-6) contains the RF
components to multiply the RF input to the desired test port fre-
quency. E-, W-, and F-band modules use X2 and X3 multipliers. V-
band module uses X2 and X2 multipliers. Q-band module uses X3
multiplier only.

Its also contains a dual directional coupler needed to make transmission and reflection measurements. Harmonic mixers are used to convert the Test and Reference signal from the coupler to the 270MHz Test and Reference IF signals that are sent to the VNA, via the test set.

SYSTEM DESCRIPTION

MILLIMETER WAVE SYSTEM SERVICE INSTRUCTIONS

The 3741A-X module contains the harmonic mixer necessary to generate the Test IF signal (Figure E-7). An external waveguide attenuator is used in conjunction with the 3741A-X.

Figure E-7. 3741A-X Millimeter Wave Module Block Diagram

<i>Vector Network Analyzer</i>	The 371XXC provides direct access to the four-channel sampler. The Test IF and Reference IF signals generated in the millimeter wave modules are sent to the four input a1, b1, a2, b2 of the VNA via the millimeter test set. The samplers are operated in direct (bypass) mode. The VNA is used in tracking mode and controls the two exter- nal synthesizers via the GPIB.
System Operation	The following paragraphs describe the operation of a 371XXC Millime- ter Wave VNA System using the Model 3740A-E modules.
	During a typical measurement, the RF Synthesizer, under the direct control of the VNA, outputs a RF signal to the test set. This RF signal is one-sixth (1/6) of the desired device-under-test (DUT) frequency.
	This RF signal is switched in the test set using the transfer switch and is sent to the millimeter wave module through Port 1 or Port 2, de- pending on the S-parameter measured.

In the millimeter wave module, the RF signal is doubled and amplified in the Doubler/Amplifier and then tripled in the Tripler. The RF signal is then sent to the Test Port via the Coupler. This is the stimulus signal for the DUT. One coupled arm of the coupler provides the RF signal for the first harmonic mixer, generating the Reference IF signal.

When there is any impedance mismatch between the test port and the DUT input port, some of the signal incident at the DUT input port is reflected back to the test port of the millimeter wave module and some travels into the DUT. In the case of two port DUTs (that is those having an input and output port), the portion of the stimulus signal that travels through the DUT goes to the test port of the second millimeter wave module for measurement.

The reflected or transmitted test signal goes through the other coupled arm of the coupler and provides the RF signal for the second harmonic mixer, generating the Test IF signal.

The LO Synthesizer, under the direct control of the VNA, outputs a LO signal to the test set. This signal is one-fifth (1/5) of the desired DUT frequency offset by 270 MHz. The LO signal enters the millimeter wave module into a limiting amplifier, which is used to keep the LO power at a fixed level into the harmonic mixers. The LO signal is then split to provide inputs to both of the harmonic mixers.

The harmonic mixers, in the case of E band, use the fifth harmonic of the LO signal. In the first harmonic mixer, the fifth harmonic of the LO is mixed with the coupled off RF signal to create the 270 MHz Reference IF input to the VNA. In the second harmonic mixer, the fifth harmonic of the LO is mixed with the RF signal reflected or transmitted from the DUT creating the 270 MHz Test IF.

The Reference IF signal is sent to a1 or a2 input of the VNA. The Test IF signal is sent to b1 or b2 input of the VNA. In the case of S11 forward reflection measurement, Reference IF signal and Test IF signal from the Port 1 module are sent to a1 and b1 inputs of the VNA respectively.

Each of these IF signals carries embedded magnitude and phase information relative to a reference signal. In the VNA, they are converted to lower frequency IF signals. Down conversion of these signals does not affect the magnitude and phase relationship; only the frequency is changed. These converted IF signals are detected by the synchronous detectors of the VNA and then converted to digital data.

		The VNA system so rors are n plied. Th presented routed to	processors, controlled by embedded firmware coupled with oftware, manipulate this digital data. Short-term system er- normalized and digital compensation is generated and ap- e resultant S-Parameter data characterizing the DUT is then I on the VNA color display, output to a printer or plotter, or the rear panel external GPIB interface.								
E-12	<i>REMOVE AND REPLACE PROCEDURES (3735B TEST SET)</i>	The Model 3735B Millimeter Wave Test Set consists of the replace subassemblies listed in Table E-1 and E-2 and shown in Figure E- These removal of these subassemblies is straight-forward and is d scribed below. Refer to Figures E-8 and E-9 while reading the pro- dure. The replacement of the subassemblies is a reverse of the rem instructions.									
	Remove Covers	To remove	e top and bottom covers, proceed as follows:								
		Step 1.	Remove the three screws from the rear of the top cover.								
		Step 2.	Gently pry the cover loose from the rear panel, slide it to the rear and lift it off.								
		Step 3.	Repeat steps 1 and 2 for the bottom cover.								
		It re	NOTE t is not necessary to remove the bottom cover, except to emove the two screws securing the power supply.								
	Remove Power Supply	To remove	e the Power Supply, proceed as follows:								
		Step 1.	Remove the top and bottom covers (above).								
		Step 2.	From the top, remove the plastic shield from the terminal strip.								
		Step 3.	Remove the twisted-pair wires (1) from the top two terminals (+V and -V).								
		Step 4.	Remove the line-voltage wires (2) from three bottom termi- nals: green-yellow wire from "ACG," brown wire from "L," and blue wire from "N."								
		Step 5.	While supporting the Power Supply with one hand, remove the two retaining screws from the underside with the other hand.								
		-									

SYSTEM DESCRIPTION

Figure E-8. Replaceable Parts Exploded View

SYSTEM DESCRIPTION

Remove Power Distribution PCB	To remove the Power Distribution PCB, proceed as follows:						
	Step 1.	Remove the top cover (above).					
	Step 2.	Disconnect the seven plug-in connectors (3 through 9).					
	Step 3.	Remove the five screws from the PCB.					
	Step 4.	Lift the PCB straight up and away.					
Remove Power Divide/Isolator	To remove lows:	e the Power Divider and Isolator Assembly, proceed as fol-					
Assembly	Step 1.	Remove the top cover (above).					
	Step 2.	Disconnect the two connectors (10) from the rear of the Power Divider.					
	Step 3.	Remove the two screws from the Power Divider.					
	Step 4.	Disconnect the connector (11) on the front of the isolator.					
	Step 5.	Remove the assembly.					
Remove Transfer Switch Assembly	To remove	e the Transfer Switch Assembly, proceed as follows:					
2 111011 125011019	Step 1.	Remove the top cover (above).					
	Step 2.	Disconnect the two connectors (12) from the sides of the Transfer Switch.					
	Step 3.	Remove the connector (13) from the front of the transfer switch.					
	Step 4.	Remove the two screws from the top of the Transfer Switch.					
	Step 5.	Remove the assembly.					
Remove Transfer Switch PCB Assembly	To remove	e the Transfer Switch PCB, proceed as follows:					
0	Step 1.	Remove the top cover (above).					
	Step 2.	Disconnect the two connectors; one from the inside of the unit (14) and the other from the outside (15) of the rear panel.					
	Step 3.	Remove the two screws from the outside of the rear panel.					
	Step 4.	Remove the assembly.					

Remove Fan Assembly	To remove the Fan Assembly, proceed as follows:					
	Step 1.	Remove the top cover (above).				
	Step 2.	From the outside of the rear panel, remove the four thumb screws from the fan guard and remove the fan guard.				
	Step 3.	Remove the connector from J5 (5) on the Power Distribu- tion PCB.				
	Step 4.	Remove the screws from the four corners and remove the Fan Assembly.				
Remove Line Voltage	To remove	e the Line Voltage Module, proceed as follows:				
moaure	Step 1.	Remove the top cover (above).				
	Step 2.	Remove the three push-on connectors (16) from the rear of the Line Voltage Module.				
	Step 3.	Remove the two retaining screws from the outside of the rear panel.				
	Step 4.	Remove the Line Voltage Module.				

Appendix F SM5293 and SM5235 Service Information

Contents

F-1	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
F-2	REPLACEABLE EXTERNAL CABLES · · · · · · · · · · · · F-3
F-3	37100C SETUP WITH SM INSTRUMENTS $\cdots \cdots F$ -4
F-4	OPERATIONAL TESTING · · · · · · · · · · · · · · · · · · ·
	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
F-5	TROUBLESHOOTING · · · · · · · · · · · · · · · · · · ·

Appendix F SM5293 and SM5235 Service Information

F-1 INTRODUCTION SM5293 and SM5235 instruments are designed to be used with a 37147 or 37169 (A or C series) VNA. They convert the multi-port VNA into standard two-port VNA measurement instruments for use up to 40 GHz. SM5235 and SM5392 instruments are identical except the SM5392 includes a front panel RF connection suitable for installing an amplifier to increase the signal at Port 1.

Published specifications are shown at the end of this Appendix.

Significant differences exist between the operation of standard 2-Port Anritsu VNAs and these SM models. These differences must be considered when calibrating or troubleshooting these SM models:

- □ The RF power at Ports 1 and 2 of these instruments will decrease significantly as frequency increases. The test port power may be flattened by performing a Flat Power Calibration.
- □ If the Source power control is set to -10 dB or lower, Lock Failure messages may appear, and are normal.
- If the BMS software installed in the 37100C is Version 3.41 (approximately) or above, a special method for creating, loading and changing the Source Lock Threshold Calibration ("HW_CAL.SLT") must be used. Details of this procedure are described below.

F-2 REPLACEABLE EXTERNAL CABLES

The following table lists user replaceable cable part numbers and provides a brief description:

Anritsu Part Number	Description (Quantity)
ND46619	Front Panel Ruggedized RF Cable (5)
B46743	Rear Panel Transfer Switch Control Cable (1)
A34774-3	Rear Panel Step Attenuator Control Cable (2)

37100C SETUP WITH SM INSTRUMENTS

SM5293 AND SM5235 SERVICE INFORMATION

F-3	37100C SETUP WITH SM INSTRUMENTS	To activate these SM instruments, follow the 37100C setup procedure below:								
		Step 1.	Press the Option Menu key.							
		Step 2.	Select Test Set Config, then S-Parameter.							
		Step 3.	Press Enter two times to accept the configuration.							
		All system hardware must be connected as follows:								
		Step 1.	Connect all 5 ruggedized front panel cables.							
		Step 2.	Insure that the front panel switch on the SM unit is depressed.							
		Step 3.	Install the small RF cable on the SM5392 near Port 1.							
		Step 4.	Connect the rear panel transfer switch control cable to the LOWER connector of the SM unit.							
		<i>Step 5.</i> Connect the rear panel step attenuator control cal they are not connected, the step attenuators will b indeterminate state and the Test Port RF may be attenuated.								
		CAUTION								
			CAUTION							
		N ca wi at	CAUTION ote the orientation of Pin 1 of the plug at the end of the bles. Connecting the step attenuator cables incorrectly ill cause damage to the step attenuators and to the step tenuator driver PCB (A8) in the 37100C.							
F-4	OPERATIONAL TESTING	N ca w at A complet formed us Version 4. cluded at used in th	CAUTION ote the orientation of Pin 1 of the plug at the end of the bles. Connecting the step attenuator cables incorrectly ill cause damage to the step attenuators and to the step tenuator driver PCB (A8) in the 37100C. e operational test of these SM instruments may be per- ing Anritsu software part number 2300-178 (3700TEST), 01 or above. Performance (guaranteed) specifications are in- the end of this Appendix. Other specifications which are the 3700Test program are <i>typical</i> (not guaranteed).							
F-4	OPERATIONAL TESTING Recalibration of the	N ca w at A complet formed us Version 4. cluded at used in th No adjust	CAUTION ote the orientation of Pin 1 of the plug at the end of the bles. Connecting the step attenuator cables incorrectly ill cause damage to the step attenuators and to the step tenuator driver PCB (A8) in the 37100C. e operational test of these SM instruments may be per- ing Anritsu software part number 2300-178 (3700TEST), 01 or above. Performance (guaranteed) specifications are in- the end of this Appendix. Other specifications which are e 3700Test program are <i>typical</i> (not guaranteed). ments are performed on the SM instruments.							

SM5293 AND SM5235 SERVICE INFORMATION

37100C SETUP WITH SM INSTRUMENTS

can cause the VNA to display error messages at default settings, including phase lock failures.

Recalibration Procedure	The follow	wing procedure must be followed in its entirety:				
Troccuurt	Step 1.	Remove the SM Test Set from the 37100C system.				
	Step 2.	Setup the 37100C Test Set Configuration to Internal:				
		a. Press the Option Menu key.b. Press the Test Set Config key.c. Press the Internal key.				
	Step 3.	Follow all of the 37100C calibration procedures provided in Chapter 6—Adjustments and save the calibrations to the hard drive.				
		If the BMS version installed in the 37100C is below Version 3.41, recalibration is then complete and the system should sweep normally with no error messages.				
		If the BMS version installed in the 37100C is Version 3.41 or above, continue with Step 4.				
	Step 4.	Copy the new Source Lock Threshold calibration to your floppy disk that is labeled <i>Internal, Millimeter Wave</i> , or <i>Broadband SLT Calibration</i> . If you do not have a floppy disk with a similar label, you may use a blank formatted floppy disk.				
		NOTE				
		Customer service representatives should provide the <i>Internal, Millimeter Wave,</i> or <i>Broadband SLT Calibration</i> disk to the cus- tomer with the Source Lock Threshold cali- bration file.				
	Step 5.	Connect the SM Test Set to the 37100C (see Section F-3, 37100C SETUP WITH SM INSTRUMENTS).				
	Step 6.	Change the Test Set configuration to S-Parameter.				
		NOTE				
		Error messages may appear.				
	Step 7.	Connect a throughline between ports 1 and 2 of the SM Test Set or				
		connect broadband terminations to ports 1 and 2.				

37100C SETUP WITH SM INSTRUMENTS

- *Step 8.* Perform the Source Lock Threshold calibration again. All error messages should disappear and the system should be sweeping normally.
- **Step 9.** Copy the new Source Lock Threshold calibration to the customer's floppy disk which is labeled "S Parameter SLT Calibration". If he does not have a floppy disk with a similar label, provide this to him.
- **F-5** TROUBLESHOOTING If a problems are observed when using the SM test set, first verify that the 37100C is operating correctly without the SM test set (remove the SM test set, configure the test set for *Internal*, and check the operation of the 37100C).

If the 37100C performs normally in the *Internal* mode, reconnect the SM test set.

Figure F-1, below, shows typical non-ratio displays when using the SM test sets.

Figure F-1. Typical Non-Ratio Display Plots

If the system experiences Lock Failure DE or Lock Failure D (and the 37100C instrument is known to be OK), the failure can only be caused by the:

- □ SM transfer switch
- **□** Transfer switch bias wiring
- $\hfill\square$ RF cables
- □ Pads

Refer to Table F-1, below, for a listing of typical transfer switch DC voltages.

Wire Color	Forward Sweep Voltage (V)	Reverse Sweep Voltage (V)						
Red	-6.6	+1.7						
Green	+1.9	-3.4						
Yellow	-3.4	+2.0						
Orange	+1.6	-6.7						

Table F-1. Transfer Switch DC Voltages (typical)

If either the Test A or Test B signal has a problem, probable failures are:

- □ Step Attenuator
- □ Coupler
- Bias Tee
- □ Pad
- □ Cables

Index

A

Adjustments										
Frequency Calibration · · ·	•	•	•	•	•	•	•	•	•	6-5
Introduction to • • • • • •	•	•	•	•	•	•	•	•	•	6-3
LO1 Calibration · · · · ·	•	•	•	•	•	•	•	•	•	6-3
LO2 Calibration · · · · ·	•	•	•	•	•	•	•	•	•	6-4
RF Power/ALC Calibration	•	•	•	•	•	•	•	•	•	6-8
Anritsu Service Centers				•		•		•	•	2-4

B

BBRAM Chip, Remove and Replace		8-8
Boot-up Problems		5-7

С

Calibration and Measurement Conditions 4-3
Checking the Service Log
Cleaning Connectors
Connector Maintenance
Cleaning · · · · · · · · · · · · · · · · · · ·
Mechanical Shock · · · · · · · · · · · · · · · · · · ·
Pin Depth Problems · · · · · · · · · · · · · · C-3
Pin Depth Tolerances · · · · · · · · · · · · · · C-4
Precautions
Repair/Maintenance · · · · · · · · · · · · · · C-5
Teflon Tuning Washer · · · · · · · · · · · · C-4
Torque · · · · · · · · · · · · · · · · · · ·
Visual Inspection · · · · · · · · · · · · · · · · · · ·
CRT Display Test

D

Diagnostic Menus						•	•	A-3
Disk Related Error Messages	•	•	•	•	•		•	B-3

E

Electro-static discharge procedures 1-9
Error Codes
Error Messages
Disk Related · · · · · · · · · · · · · · · · · B-3
GPIB Related · · · · · · · · · · · · · · · · · B-3
Service Log · · · · · · · · · · · · · · · · · · ·
Exchange Assembly Program 2-3
External Keyboard Interface Test

F

Failed Assembly Exchange Program	. 1-7
Fan Assembly, Remove and Replace	8-19
Floppy Disk Drive, Remove and Replace	8-16

Floppy Disk Problems 5-9
Frequency Calibration Adjustment 6-5
Front Panel Assembly, Remove and Replace . 8-13
Front Panel Test. 3-7
Functional Assembly Level Troubleshooting. 1-5
C
GPIB Interface lest
GPIB Related Error Messages B-3
Н
Hard Disk Problems
_
Ι
Identification Number 1-3
Internal Hardware Adjustments and
Calibration
Isolation Procedures, Troubleshooting 5-16
- -

L

LO1 Calibration.									6-3
LO2 Calibration.									6-4

M

Millimeter Wave System
Description · · · · · · · · · · · · · · · · · E-3
Performance Verification—General · · · · · E-4
Performance Verification—
High Level Noise Test, Reflection · · · · · E-10
Performance Verification—
High Level Noise Test, Transmission · · · · E-8
Performance Verification—
IF Power Level Test · · · · · · · · · · · · E-6
Performance Verification—
Source Match/Directivity Test · · · · · · E-15
Performance Verification—
System Dynamic Range Test · · · · · · · E-12
Remove and Replace Procedures · · · · · E-30
Replaceable Parts · · · · · · · · · · · · E-4
System Description · · · · · · · · · · · · E-24
Troubleshooting · · · · · · · · · · · · · · E-20
Millimeter Wave System Description E-3
Module Exchange Program 2-3

\boldsymbol{N}

Noise Floor/Receiver Dynamic Range Test. . . 4-5

0

0 S

Online Manuals .																1-3
Operational Error	M	es	sa	ge	es	•	•	•	•	•	•	•	•	•	•	B-3

P

Parts Ordering Information
Performance Specifications
Performance Verification Procedure 4-4
Performance Verification—General
Millimeter Wave System · · · · · · · · · · · E-4
Performance Verification—
High Level Noise Test, Reflection
Millimeter Wave System · · · · · · · · · · E-10
Performance Verification—
High Level Noise Test, Transmission
Millimeter Wave System · · · · · · · · · · E-8
Performance Verification—
IF Power Level Test
Millimeter Wave System · · · · · · · · · · · E-6
Performance Verification—
Souce Match/Directivity Test
Millimeter Wave System · · · · · · · · · · E-15
Performance Verification—
System Dynamic Range Test
Millimeter Wave System · · · · · · · · · E-12
Peripheral and Interfaces Tests
Pin Depth
Problems · · · · · · · · · · · · · · · · · · ·
Tolerances · · · · · · · · · · · · · · · · · · ·
Power Supply Module, Remove and Replace . 8-20
Precautions
Preventive Service
Printed Circuit Assemblies
Printer Interface Test

R

Rear Panel Assembly, Remove and Replace . 8-18
Rear Panel PCB, Remove and Replace 8-21
Recommended Test Equipment.
Related Manuals
Remove and Replace
LCD
Remove and Replace Procedures 8-3
A12 VME Bus Terminator PCB · · · · · · 8-12
A13-A16 PCBs · · · · · · · · · · · · · · · · 8-6
A18 Rear Panel PCB · · · · · · · · · · · · 8-21
A1-A9 PCBs
A9 PCB BBRAM Chip · · · · · · · · · · · 8-8
A9 PCB SRAM Battery · · · · · · · · · · · 8-10
Covers

Equipment Required · · · · · · · · · · · · 8-3
Fan Assembly · · · · · · · · · · · · · · · 8-19
Floppy Disk Drive · · · · · · · · · · · · · 8-16
Front Panel Assembly 8-13
H/W (Hardware) Calibrations · · · · · · · A-4
Installed Options · · · · · · · · · · · · · · · · · A-4
Millimeter Wave System · · · · · · · · · E-30
Operational · · · · · · · · · · · · · · · · · · ·
Peripheral Tests · · · · · · · · · · · · · · · · · A-4
Power Supply Module · · · · · · · · · · · · 8-20
Read Service Log
Rear Panel Assembly · · · · · · · · · · · 8-18
Signal Source Module Assemblies · · · · · 8-27
Start Self Test · · · · · · · · · · · · · · · · · · ·
Test Set Module Assemblies · · · · · · · 8-22
Troubleshooting · · · · · · · · · · · · · · · · · A-4
Replacable Subassemblies and Parts 2-3
Replaceable Parts
Millimeter Wave System · · · · · · · · · · E-4
RF Power/ALC Calibration Adjustment 6-8
RF/Microwave Components

S

Scope of Manual
Screen Display Problems
Self Test
Self Tests
Service Centers
service log
Service Log
Service Log Error Messages
Service Logt
Service Software
Service Strategy
Service Support Information 1-6
Servicing Specially Modified Instruments 1-6
Signal Source Modules Remove and Replace 8-27
Signal Source moules, memore and mephace of 21
Signal Source Problems
Signal Source Problems
Signal Source Problems
Signal Source Problems 5-13 Signal Source/Test Set Problems 5-14 Introduction to 5-14 SM Troubleshooting. F-6
Signal Source Problems 5-13 Signal Source/Test Set Problems 5-14 SM Troubleshooting. F-6 SM5235 F-3
Signal Source Problems5-13Signal Source/Test Set ProblemsIntroduction to5-14SM Troubleshooting.F-6SM5235F-3SM5293F-3
Signal Source Problems5-13Signal Source/Test Set ProblemsIntroduction to5-14SM Troubleshooting.F-6SM5235F-3SM5293F-3S-parameter4-3
Signal Source Problems5-13Signal Source/Test Set ProblemsIntroduction to5-14SM Troubleshooting.F-6SM5235F-3SM5293F-3S-parameter4-3Special Precautions4-4
Signal Source Problems5-13Signal Source/Test Set ProblemsIntroduction to5-14SM Troubleshooting.F-6SM5235F-3SM5293F-3S-parameter4-3Special Precautions4-4Specifications, Performance1-9
Signal Source Problems 5-13 Signal Source/Test Set Problems 5-14 Introduction to 5-14 SM Troubleshooting. F-6 SM5235 F-3 SM5293 F-3 S-parameter 4-3 Special Precautions 4-4 Specifications, Performance 1-9 SRAM Battery, Remove and Replace 8-10
Signal Source Problems 5-13 Signal Source/Test Set Problems 5-14 Introduction to 5-14 SM Troubleshooting. F-6 SM5235 F-3 SM5293 F-3 S-parameter 4-3 Special Precautions 4-4 Specifications, Performance 1-9 SRAM Battery, Remove and Replace 8-10 Standard Conditions 4-3
Signal Source Problems5-13Signal Source/Test Set ProblemsIntroduction to5-14SM Troubleshooting.F-6SM5235F-3SM5293F-3S-parameter4-3Special Precautions4-4Specifications, Performance1-9SRAM Battery, Remove and Replace8-10Standard Conditions4-3Standard Options1-4

Static Sensitive Component
Handling Procedure
System Description
A13 I/O Interface #1 PCB· · · · · · · · · 7-15
A14 I/O Interface #2 PCB· · · · · · · · · 7-15
A15 Graphic Processor PCB · · · · · · · 7-16
A16 Hard Disk PCB \cdot · · · · · · · · · · · · · 7-16
A17 System Motherboard · · · · · · · · · 7-16
A18 Rear Panel Interface PCB · · · · · · 7-17
A24 VME Bus Terminiator PCB · · · · · 7-16
A5 A/D Converter PCB · · · · · · · · · · · 7-11
A7 PCB, LO3 · · · · · · · · · · · · · · · 7-10
A8, Source Lock/Signal Separation and
Control
A9 Main Processor PCB · · · · · · · · · · 7-12
Analog Subsystem Assemblies · · · · · · · 7-7
Digital Subsystem Assemblies · · · · · · 7-12
Front Panel Assembly 7-16
Froppy Disk Drive · · · · · · · · · · · · · 7-16
IF Section · · · · · · · · · · · · · · · · · 7-10
Internal VGA Monitor · · · · · · · · · · · 7-18
Main Chassis Assemblies · · · · · · · · · · 7-16
Millimeter Wave System · · · · · · · · · E-24
Overview
Power Supply Module · · · · · · · · · · · 7-18
Rear Panel Assembly · · · · · · · · · · · · 7-17
Receiver Module · · · · · · · · · · · · · · · 7-9
Signal Source Module · · · · · · · · · · · · 7-7
Test Set Module · · · · · · · · · · · · · · · 7-8
System Test Certification 1-5

T

*
Technical Support 1-6
Test Fixtures/Aids 1-7
Test Set Modules, Remove and Replace 8-22
Torquing Connectors
Troubleshooting
Association Information · · · · · · · · · · · 5-4
Boot-up Problems 5-7
Error Code Problems · · · · · · · · · · · · 5-10
Floppy Disk Problems · · · · · · · · · · · 5-9
Functional Level Assembly 1-5
Hard Disk Problems · · · · · · · · · · · · 5-8
Introduction to · · · · · · · · · · · · · · · · 5-3
Isolation Procedures · · · · · · · · · · · · 5-16
Line Source and Interface Checks · · · · · 5-4
Millimeter Wave System · · · · · · · · · · E-20
Peripheral Interface · · · · · · · · · · · · 5-18
Power Supply Module Check 5-6
Power Supply Voltage Check 5-4
Power-up Problems
Questionable Measurements · · · · · · · 5-19
Recommended Test Equipment · · · · · · 5-4
Screen Display Problems 5-9
Signal Source · · · · · · · · · · · · · · · · · 5-13
Signal Source/Test Set · · · · · · · · · · · 5-14
Tuning Washer
-

V

Visual Inspection of Connectors	. C-5
VME Bus Terminator, Remove and Replace .	8-12